Carotenoids and related polyenes. Part 5.¹ Lewis acid-promoted stereoselective rearrangement of 5,6-epoxy carotenoid model compounds

Yumiko Yamano, Chisato Tode and Masayoshi Ito*

Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan

The novel acyclic tetrasubstituted olefinic end group and the cyclopentyl end group of carotenoids were obtained by Lewis acid-promoted stereoselective rearrangement of the epoxide end group of 5,6-epoxy carotenoids. The scope and limitation of this rearrangement were investigated.

Introduction

Crassostreaxanthin B1 (Scheme 1), a marine carotenoid having the novel tetrasubstituted olefinic end group, was isolated from the viscera of Crassostrea gigas and its stereostructure was determined by Matsuno's group in 1992.² However, the absolute configuration in the new end group has remained undetermined. It is conceivable that this end group is formed in nature from the epoxide end group of 5,6-epoxy carotenoids † such as halocynthiaxanthin 2^{3} by opening of the C-6-oxygen bond of the oxirane ring and subsequent migration of the methyl group at the C-1 position (route a). Thus, the absolute configuration at C-3' in crassostreaxanthin B 1 is considered to be S, since chiralities at C-3 in most of the known natural epoxy carotenoids are R. On the other hand, mytiloxanthin $3^{3b,4}$ is also believed ⁵ to arise from 5,6-epoxy carotenoids by cleavage of the oxirane ring at the C-5 position and successive ring contraction (a pinacolic rearrangement) (Scheme 1, route b). In a previous communication,⁶ we reported that treatment of the epoxide **5a**, having the partial structure of the epoxy carotenoids, with Lewis acids gave the cyclopentyl ethyl ketone 8 possessing the same configuration as mytiloxanthin 3, and the acyclic tetrasubstituted olefinic methyl ketone 10 including the partial struc-

† We have employed the numbering system used in carotenoids.

ture of crassostreaxanthin B 1 (Scheme 2). It supported the proposed metabolic pathway of the 5,6-epoxy carotenoids.

In order to accomplish the biomimetic synthesis of 2 and 3, we investigated the reaction of epoxides having various substituents at the C-6 position with Lewis acids. The present paper is concerned with a full account of these experiments.

Results and discussion

Rearrangement of epoxides 5a,b

It was reported ⁷ by Rüttimann that reaction of epoxides 4a,b(Scheme 2) with BF₃·OEt₂ followed by hydrolysis gave cyclopentyl methyl ketones **6** and **11**, respectively, each as a single product in up to 70% yield. Then he proposed the possible intermediates I and II deriving from 'axial' cleavage of the respective epoxides. However, the mechanism for the formation of the methyl ketone **6** from *anti*-epoxide **4a** is in conflict with the proposed biosynthetic mechanism⁵ for mytiloxanthin **3** formation. Since substituents at the C-5 and C-6 positions of these epoxides are both methyl groups, the direction of the oxirane ring opening cannot be proved. Thus, epoxides **5a,b** having an ethyl group at C-6 were treated with BF₃·OEt₂.

Epoxides **5a**,**b** were synthesized from the known⁸ optically active ketone **15** as shown in Scheme 3. Treatment of ketone **15**

Scheme 1

Table 1 Rearrangement of the α -acetylenic alcohol 17 and the α , β -unsaturated aldehyde 18 by a silvl vanadate catalyst ^{α}

			Catalyst (molar equiv.)			Depation	Isolated	yield (%)
E	Entry	Substrate	TPSV	TPS	PhCO ₂ H	time (h)	18	19
1		17	0.02	0.15	0.02	23	43	48
2		17	0.02		0.02	6		96
3		17	0.02		_	24		76
4		18	0.02		0.02	6.5		95
5		18	0.02			5.5		85

" All reactions were carried out in refluxing xylenes.

with lithium trimethylsilylacetylide gave the hydroxy compound 16 which, without purification, was deprotected and then acetylated to afford the acetate 17 as a single product in 94% yield from 15. Its stereochemistry was deduced from mechanistic considerations⁸ as shown in Scheme 3. The β , γ unsaturated aldehyde 19 was obtained by rearrangement of the α -acetylenic alcohol 17 using tris(triphenylsilyl)vanadate (TPSV) catalyst.^{9,10} According to the literature,⁹ the α -acetylenic alcohol 17 was treated with TPSV (0.02 molar equiv.), triphenylsilanol (TPS; 0.15 molar equiv.) and benzoic acid (0.02 molar equiv.) in refluxing xylenes to give the α,β - and β,γ unsaturated aldehydes 18 (43%) and 19 (48%) (Table 1, entry 1). Although under these reaction conditions, much of the α,β unsaturated aldehyde 18 remained unchanged, it was found to be converted efficiently into the desired aldehyde 19 under the conditions either without TPS (entry 4) or with TPSV only (entry 5). Thus, alcohol 17 was treated under these two conditions (entries 2 and 3). Aldehyde 19 was effectively obtained in a shorter time by the coupled use of TPS and benzoic acid (entry 2). This reaction may be envisaged to proceed via the vanadate

Scheme 3 Reagents and conditions: i, LiC=CTMS; ii, 10% aq. KOH; iii, Ac₂O, Py; iv, see Table 1; v, NaBH₄; vi, MsCl, Py; vii, LiAlH₄, THF, reflux; viii, MCPBA

ester 23 as shown in Scheme 4. It is considered that the transesterification reaction $(18 + \text{TPSV} \longrightarrow 23)$ would be inhibited by the presence of an excess of TPS, resulting in the α,β unsaturated aldehyde 18 remaining, even after a long reaction time (entry 1).

The structures of products 18 and 19 were confirmed on the basis of their spectral data (see Experimental section). In the IR

Table 2Rearrangement of epoxides 5a,b

			Isolated yield (%)		
Entry	Substrate	Conditions (equiv.)	8	10	13
1	5a	$BF_3 \cdot Et_2O(3)/CH_2Cl_2$ -78 °C 3 h to 0 °C 1 h	31	54	_
2	5a	$SnCl_4$ (2)/CH ₂ Cl ₂ -25 °C, 2.5 h to 0 °C, 2.5 h	trace	70	—
3	5a	$(p-BrC_6H_4)_3NSbCl_6(0.1)$ CH ₂ Cl ₂ /rt, 1.5 h	12	71	
4	5b	$BF_3 \cdot Et_2O(2)/CH_2Cl_2$ -78 °C, 1.25 h to -25 °C, 1.5 h	_	49	44
5	5b	SnCl ₄ (2)/CH ₂ Cl ₂ -78 °C, 2 h	—	59	14
6	5b	TiCl ₄ (3)/CH ₂ Cl ₂ -78 °C, 30 min	_	15	
7	5b	$ZnCl_2$ (2)/toluene rt, 60 h	_	50	12
8	5b	$(p-BrC_6H_4)_3NSbCl_6 (0.1)$ CH ₂ Cl ₂ /rt, 1.5 h	—	62	23

spectrum, compound **18** showed an absorption (1660 cm⁻¹) due to an α , β -unsaturated aldehyde, whereas an absorption (1720 cm⁻¹) due to a saturated aldehyde appeared in compound **19**. The ylidene double bond in compound **18** was determined to be the *Z*-form from ¹H NMR spectroscopy including 2D nuclear Overhauser enhancement spectroscopy (NOESY) experiments (cross-peaks between 5-CH₃ and 7-H).

Reduction of the formyl group in 19 with NaBH₄ followed by mesylation gave the mesylate 21 (86% from 19), which was refluxed with LiAlH₄ in THF and then reacetylated to afford compound 22 (90%). Treatment of compound 22 with MCPBA led to a mixture of the *anti*-epoxide 5a (34%) and the *syn*epoxide 5b (61%). The relative configurations between the acetoxy and epoxy groups in the two isomers were confirmed by their ¹H NMR data.⁸

Reaction of the anti-epoxide 5a with BF₃·OEt₂ (Table 2, entry 1) gave the acyclic tetrasubstituted olefinic methyl ketone 10 (54%) and the cyclopentyl ethyl ketone 8 (31%) (Scheme 2). In this reaction, the cyclopentyl methyl ketone 14 arising through the intermediate I^7 was not obtained. Thus, it was found that for epoxide 5a, cleavage of the oxirane ring at C-6 (route a) did not induce the skeletal transformation into compound 14, but rather caused the migration of the methyl group at C-1 to give compound 10. On the other hand, the five membered ethyl ketone 8 was formed in the same pathway as the proposed biosynthetic mechanism⁵ of mytiloxanthin 3 (route b). Then, the same treatment (entry 4) of the syn-epoxide 5b provided the cyclopentyl ethyl ketone 13 (44%) and compound 10 (49%). In addition, a variety of Lewis acids were also examined as shown in Table 2. Predominant formation of the novel olefinic methyl ketone 10 was found by treatment of both epoxides 5a,b with SnCl₄ (entries 2 and 5) and tris(4bromophenyl)aminium hexachloroantimonate11 (entries 3 and 8). In these cases, the anti-epoxide 5a showed a tendency to give compound 10 more selectively than the syn-epoxide 5b. Rearrangement of the syn-epoxide 5b tends to proceed more rapidly than that of the *anti*-epoxide 5a.

The stereostructures of the cyclopentyl ethyl ketones **8** and **13** were determined by the comparison of their ¹H NMR data with those of the known¹² five membered methyl ketones **7** and **12** (Scheme 2). The structure of the novel compound **10** was confirmed on the basis of its spectral data (see Experimental section), which failed to prove the geometry of the tetrasubstituted double bond. Thus, it was chemically determined by the synthesis of both isomers **10**' and **33** as shown in Scheme 5.

Reaction of the ketone 24 with phosphorothioate 26 prepared according to the literature¹³ and following reduction of the products gave an isomeric mixture of alcohols 27 and 28

Scheme 5 Reagents and conditions: i, (EtO)₂P(O)SCH(Et)CO₂Me 26, LDA; ii, LiAlH₄; iii, MsCl, Py; iv, Py·SO₃, LiAlH₄; v, PTSA; vi, LDA, acetone; vii, Ac₂O, Py

(34% from 24; 27:28 = *ca.* 3:2), which was cleanly separated by column chromatography. Stereochemistries of these alcohols were determined by their NOESY measurements as shown in Scheme 5. Each of them was transformed into their respective acyclic methyl ketones 33 and 10' *via* the aldehydes 31 and 32 by modification of a reported⁶ method. Spectral properties of the *E*-olefinic methyl ketone 10' derived from the alcohol 28 were in good agreement with those of compound 10 obtained from rearrangement of epoxides 5a,b. In the NOESY spectra of the *Z*-isomer 33, cross-peaks between the methylene protons of the ethyl group and the methylene protons at the C-5 position were observed. Hence, the stereoselective formation of compound 10 from both the *anti*- and *syn*-epoxides 5a and 5b could be accounted for through a concerted antiperiplanar pathway.

Rearrangement of epoxides 4a,b

Rüttimann reported⁷ that only ring-contracted products **6** and **11** (Scheme 2) were obtained by treatment of epoxides **4a,b** with $BF_3 \cdot OEt_2$ followed by hydrolysis. On the other hand, in the case of epoxides **5a,b**, the ring contraction competed with migration of the methyl group at the C-1 position as mentioned in the preceding section. Thus, reaction of epoxides **4a,b** with $BF_3 \cdot OEt_2$ was reinvestigated.

Epoxides **4a**,**b** were effectively synthesized from the known⁸ triflate **34** as shown in Scheme 6. A coupling reaction^{8,14} of the triflate **34** with methyl vinyl ketone in the presence of a palladium catalyst gave the dienone **35** (81%). Ozonolysis of the dienone **35** provided the enal **36** which, without purification, was reduced with NaBH₄ to give the alcohol **37** (79% from **35**). Deoxygenation¹⁵ of the alcohol **37** was attained by treatment with a pyridine–sulfur trioxide complex and by subsequent reduction with LiAlH₄ to provide the compound **38** (94%), which was deprotected and then acetylated to afford the acetate **39** (88%). Treatment of the compound **39** with MCPBA led to a mixture of *anti*-epoxide **4a** (23%) and *syn*-epoxide **4b** (51%).

Substrate	Amount of MCPBA Conditions	Purification method Eluents, proportions	Products (Yield)
40	1.2 equiv.	<i>p</i> -HPLC	41a 34%
	0 °C, 3 h	$MeOH-Et_2O-hexane, 0.3:30:70$	41b 54%
43	1.1 equiv.	p-HPLC	44a 17%
	0 °C, 1 h	Et_2O -hexane, 9:41	44b 44%
45	1.5 equiv.	short CC	46a 16%
	$0 ^{\circ}C, 20 \min \longrightarrow$	Et_2O -hexane, 3:17	46b 68%
	rt, 30 min		
47	2 equiv.	low-pressure CC	48a 23%
	$0 \circ \hat{C}, 1 h \longrightarrow rt, 3 h$	acetone-hexane, 1:4	48b 63%
49	2 equiv.	short CC	50a 31%
	0 °Ĉ, 2 h	Et_2O -hexane, 1:39	50b 48%
51	2 equiv.	CČ	52a 22%
	$0 \circ \hat{C}$, 30 min \longrightarrow	$Et_2O-CH_2Cl_2, 1:19$	52b 63%
	rt, 1 h		
54	1.3 equiv.	short CC	55a 26%
	0 °C, 2 h	Et_2O -hexane, 1:9	55b 61%

Scheme 6 Reagents and conditions: i, methyl vinyl ketone, $PdCl_2$ -(PPh₃)₂, Et₃N, DMF, 85 °C; ii, O₃, -20 °C; then Zn, AcOH, -20 °C to 0 °C; iii, NaBH₄; iv, SO₃·Py; then LiAlH₄; v, 47% aq. HF; vi, Ac₂O, Py; vii, MCPBA

Reaction of *syn*-epoxide **4b** with BF₃·OEt₂ provided only the five-membered methyl ketone **12** (63%) in accordance with the results reported⁷ by Rüttimann. On the contrary, the same treatment of *anti*-epoxide **4a** was found to give the olefinic ketone **9** together with compound **7** (63%; **9**:**7** = *ca.* 1:1).

Rearrangement of other epoxides

From the results in the preceding sessions, it is expected that this rearrangement reaction should provide an effective synthesis of optically active crassostreaxanthin **B 1** as shown in Scheme 7, in which the absolute stereochemistry of the β -

hydroxy group has not been confirmed. Thus, the reaction of epoxides (41, 44, 46, 48, 50, 52, 55 and 58) having several substituents at the C-6 position with $BF_3 \cdot OEt_2$ was next studied towards the biomimetic synthesis of crassostreaxanthin B 1 as shown in Scheme 8. (a) Preparation of epoxides 41, 44, 46, 48, 50, 52, 55 (Table 3) and 58. Treatment of compound 40^{10} with MCPBA, which was a key intermediate for the synthesis of halocynthiaxanthin 2, afforded *anti*-epoxide 41a (34%) and *syn*-epoxide 41b (54%).

Epoxides 44a,b were obtained from the known⁸ dienoate 42 by deprotection, acetylation and subsequent epoxidation (44a: 12% from 42; 44b: 31% from 42).

Epoxides **46a**,**b** were synthesized from siloxy ketone **15** by reaction with phenyllithium, deprotection, acetylation, dehydration and then epoxidation (**46a**: 13% from **15**; **46b**: 54% from **15**).

Epoxides **48a,b**, **50a,b**, **52a,b** and **55a,b** were prepared either from the alcohol **37** or the alcohol **20** as shown in Scheme 8.

Epoxides **58a,b** were synthesized through the epoxy aldehyde **57** as follows. Direct preparation of **57** by treatment of the aldehyde **19** with MCPBA resulted in a low yield (46%) because of competition with the Baeyer–Villiger reaction. Thus, **57** was prepared from alcohol **20** by epoxidation with MCPBA followed by oxidation ¹⁶ with tetrapropylammonium perruthenate (TPAP) and NMO in 87% yield for the two steps. Then, compound **57** was treated with the Wittig reagent derived from methyltriphenylphosphonium bromide and *n*-butyllithium to afford compounds **58a** (14%) and **58b** (35%).

(b) Rearrangement of epoxides 41, 44, 46, 48, 50, 52, 55 and 58 (Table 4). Initially, rearrangement of epoxides 41a,b with BF_3 ·OEt₂ was examined. However, this reaction did not afford the desired olefinic compound 59 but gave a complicated mixture.

Nicolaou and his co-workers reported ¹⁷ that a π -orbital placed adjacent to the epoxide unit acts as an activator of the C–O bond cleavage in the oxirane ring. Thus, the reaction of epoxides **44a**,**b** and **46a**,**b** was next examined in order to obtain the olefinic compounds mainly. Against expectation, epoxides **44a**,**b** provided exclusively the five-membered compounds **60** (20% from **44a**: 18% from **44b**) and **61** (67% from **44b**) formed through cleavage of the oxirane ring at the C-5 position, whereas epoxides **46a**,**b** gave a complicated mixture.

As rearrangement of epoxides 4 and 5 afforded the olefinic compounds 9 and 10 (Scheme 2), the reaction of epoxides 48, 52 and 55, whose substituents at the C-6 position are alkyl groups having an oxygen functional group, was next examined. Treatment of epoxides 48a,b with BF₃·OEt₂ provided the diols 68 (98% from 48a) and 69 (12% from 48b), which were considered to be formed through the dioxenium ion intermediate¹⁸ 70. Thus, epoxide 50a was treated with BF₃·OEt₂ to provide the five-membered compounds 71 (62%) and 72 (28%) by regioselective cleavage of the epoxide at the C-5 position and successive skeletal rearrangement. Epoxides 52a,b also afforded the five-membered compounds 62 and 63. However, *anti*-epoxide 52a did not provide the expected *anti*-compound 62 but the *syn*-

Scheme 8 Reagents and conditions: i, MCPBA; ii, TBAF; iii, Ac₂O, Py; iv, PhLi; v, PTSA; vi, POCl₃, Py, reflux; vii, 47% aq. HF; viii, TBSCl, DMAP, Et₃N; ix, MsCl, Py; x, KCN, 18-crown-6, DMSO, 120 °C; xi, DIBAL-H; xii, NaBH₄; xiii, NMO, mol. sieves 4 Å, TPAP; xiv, MePPh₃Br, BuLi

compound 63 in low yield (14%), whereas *syn*-epoxide 52b gave a mixture of compounds 62 and 63 (*ca.* 3:1) in 86% yield. Low stereoselectivity in the rearrangement of these epoxides 52a,b cannot at present be explained. On the other hand, the tetrasubstituted olefinic compound 73 (51% from 55a; 26% from 55b) was obtained accompanied with five-membered compounds 64 (16% from 55a) and 65 (29% from 55b), and the conjugated enone 75 (16% from 55a; 13% from 55b) formed through compound 73. These results show that decreasing the electron-withdrawing inductive effect of the oxygen atom on the C-6 carbon atom has a tendency to cause cleavage of the oxirane ring at the C-6 position, thus providing the olefinic compounds.

Rearrangement of epoxides 58a,b with BF₃·OEt₂ provided the tetrasubstituted olefinic compound 74 as a minor product (13% from 58a; 12% from 58b) and the five-membered compounds 66 (16% from 58a) and 67 (77% from 58b).

In summary, Lewis acid-catalysed rearrangement of 5,6epoxy carotenoid model compounds possessing the appropriate substituents provides stereoselectively the novel tetrasubsti-

		Purification method	
Substrate	Conditions	Eluents, Proportion	Products (Yield)
41a	−78 °C, 1 h	short CC	complex mixture
		acetone-hexane, 15:85	
41b	−78 °C, 1 h	short CC	complex mixture
		acetone-hexane, 15:85	
44a	$-78 \text{ °C}, 1 \text{ h} \longrightarrow$	p-TLC	60 20%
	0 °C, 4 h	Et_2O -hexane, 1:1	
44b	$-78 \text{ °C}, 1 \text{ h} \longrightarrow$	p-TLC	60 18%
	$0 ^{\circ}\text{C}, 1.5 \text{h} \longrightarrow$	Et_2O -hexane, 1:1	61 67%
	rt, 1.5 h		
46a	0 °C, 3 h	short CC	complex mixture
		Et_2O -hexane, 1:9	
46b	$-78 \text{ °C}, 1 \text{ h} \longrightarrow$	short CC	complex mixture
	$0 ^{\circ}\text{C}, 1.5 \text{h} \longrightarrow$	Et_2O -hexane, 1:9	
	rt, 1.5 h		
48a	−78 °C, 5 h	short CC	68 98%
		acetone–hexane, 3:7	
48b	−78 °C, 4 h	short CC	69 12%
		acetone-hexane, 1:4	
50a	−78 °C, 4 h	short CC	71 62%
		Et_2O -hexane, 1:19 \longrightarrow 1:4	72 28%
50b	−78 °C, 2 h	short CC	complex mixture
	50.00 01	Et_2O -hexane, 1:19	CO 1 407
52a	$-7/8$ °C, 2 h \longrightarrow	short CC	63 14%
	$0 {}^{\circ}C, 6 h \longrightarrow$	Et_2O -hexane, 2:3	
521	rt, 15 h		(2, (2, 2, 1))
520	-78° C, 1 h \rightarrow	short CC	62:63 = 3:1
55-	0 C, 4 h	El_2O -nexane, 1:5	80% 64 160/
55a	= 78°C, 2 II	Et O havana 217	04 1070 72 510/
		Et_2O -nexame, 5.7	75 3170 75 160/
55h	78 °C 2 h	short CC	/5 10% 65 200/
330	-78 C, $211 \rightarrow$	short CC	73 260/
	0 C, 2 II	acetone–nexane, 1.4	75 120/0 75 120/
580	-78 °C 2 h	n TL C	66 16%
30a	$0^{\circ}C$ 6h	p-11C Et O bevane 3:7	74 13%
	rt 15h	Et20 nexane, 5.7	/= 15/0
58h	$-78^{\circ}C^{2}h$	short CC	67 77%
200	/0 0,21	Et_{O} hexane 1.4	74 12%
		1.70 noruno, 1.7	/ 12/0

tuted olefinic compounds as the major products. Work is in progress on a biomimetic synthesis of crassostreaxanthin B 1 using this rearrangement.

Experimental

Mps were measured on a micro melting point apparatus (Yanagimoto) and are uncorrected. UV-VIS spectra were recorded on a JASCO Ubest-55 instrument. IR spectra were measured on a Shimadzu IR-27G spectrometer, or on a Shimadzu FT-IR 4000 spectrometer or a Perkin-Elmer FT-IR spectrometer, model Paragon 1000, for chloroform solutions unless otherwise stated. ¹H NMR spectra at 200, 300 or 500 MHz were determined on a Varian XL-200, a Varian Gemini-200, a Varian Gemini-300 or a Varian VXR-500 superconducting FT-NMR spectrometer, respectively, for deuteriochloroform solutions (tetramethylsilane as internal reference). ¹³C NMR spectrum at 125 MHz was measured on a Varian VXR-500 superconducting FT-NMR spectrometer in a deuteriochloroform solution using tetramethylsilane as an internal standard. J Values are given in Hz. Mass spectra were taken on a Hitachi M-4100 spectrometer. Optical rotations were measured on a JASCO DIP-181 polarimeter ($[a]_D$ values are in units of $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$).

Column chromatography (CC) was performed on silica gel (Merck Art. 7734). Short column chromatography (short CC) was performed on silica gel (Merck Art. 7739) under reduced pressure. Low-pressure column chromatography was conducted on a Yamazen Low pressure Liquid Chromatography System using a Lobar column (Merck LiChroprep Si 60). Preparative TLC (PLC) was performed on silica gel plates (Merck silica gel $60F_{254}$ precoated plates, 0.5 mm thickness). Analytical and preparative HPLCs were carried out on Shimadzu LC-5A and 6A instruments with a UV–VIS detector, using a LiChrosorb Si-60 (7 μ m), 1.0 × 30 cm column.

Standard work-up means that the organic layers were finally washed with brine, dried over anhydrous sodium sulfate (Na₂SO₄), filtered and concentrated *in vacuo* below 30 °C using a rotary evaporator. All operations were carried out under nitrogen or argon. Hexane refers to *n*-hexane.

(1*R*,4*R*,5*R*)-4-Ethynyl-4-hydroxy-3,3,5-trimethylcyclohexyl acetate 17

BuLi (1.63 mol dm⁻³ in hexane; 40.4 cm³, 66 mmol) was added to a solution of TMS acetylene (9.3 cm³, 66 mmol) in dry THF (60 cm³) at 0 °C and the mixture was stirred for a further 20 min. To this mixture was added dropwise a solution of the ketone 15⁸ (10.0 g, 44 mmol) in dry THF (80 cm³) at 0 °C and the mixture was stirred at 0 °C for 1 h. The reaction was quenched with saturated aq. NH4Cl. After evaporation off of the THF, the residue was extracted with Et₂O. The extracts were washed with brine, dried and evaporated to give the crude hydroxy compound 16 which, without purification, was dissolved in MeOH (100 cm³) and aq. 10% KOH (50 cm³) was added to this solution and the reaction mixture was stirred at room temperature for 30 min. After evaporation off of the MeOH, the residue was extracted with AcOEt. The extracts were washed with brine, dried and evaporated to afford the diol which, without purification, was dissolved in a mixture of dry pyridine (Py) (77.5 cm³) and Ac₂O (29 cm³). After being stirred at room temperature for 16 h, the reaction mixture was poured into ice-water and extracted with Et2O. The extracts were washed with aq. 5% HCl, saturated aq. NaHCO₃ and brine. Evaporation of the dried extracts gave a residue which was purified by short CC (acetone–hexane, 1:4) to afford the *acetylenic alcohol* **17** (9.27 g, 94%) as colourless crystals; mp 63.5– 64.5 °C (from Et₂O–hexane); $[a]_{D}^{27}$ –28.0 (*c* 1.00, MeOH); $v_{max}/$ cm⁻¹ 3600 and 3450 (OH), 3320 (C≡CH), 1720 (OAc); δ_{H} (300 MHz) 1.08 (3H, d, *J* 6.5, 5-Me), 1.12 and 1.13 (each 3H, s, *gem*-Me), 2.04 (3H, s, OAc), 2.22 (1H, m, 5-H), 2.51 (1H, s, 8-H), 4.96 (1H, quint., *J* 3, 3-H) (Found: C, 69.31; H, 9.26. C₁₃H₂₀-O₃ requires C, 69.61; H, 8.99%).

Rearrangement of the α -acetylenic alcohol 17 and the α , β unsaturated aldehyde 18 by a silyl vanadate catalyst (Table 1)

General procedure. The reaction was conducted in the conditions shown in Table 1 and continued until a change in the TLC spots of each product was not observed. After evaporation off of the solvent, the residue was purified by short CC (acetone–hexane, 3:17) to give the *a*, β -unsaturated aldehyde **18** or β , γ -one **19** in the yield as shown in Table 1.

Compound 18. $[a]_{D}^{25} - 115.7$ (*c* 1.59, MeOH); $\lambda_{max}(EtOH)/nm$ 243; ν_{max}/cm^{-1} 1725 (OAc), 1660 (conj. CHO), 1605 (C=C); $\delta_{H}(500 \text{ MHz})$ 1.10 (3H, d, *J* 6.5, 5-Me), 1.43 (3H, s, 1-Me_{ax}), 1.48 (3H, s, 1-Me_{eq}), 1.68 (1H, ddd, *J* 15, 12.5 and 7, 4-H_{ax}), 1.76 (1H, dd, *J* 14 and 5.5, 2-H_{eq}), 1.88 (1H, dd, *J* 14 and 8.5, 2-H_{ax}), 1.88 (1H, ddd, *J* 15, 5.5 and 3.5, 4-H_{eq}), 2.07 (3H, s, OAc), 2.82 (1H, m, 5-H), 5.06 (1H, m, 3-H), 5.80 (1H, dd, *J* 8 and 1.5, 7-H), 10.38 (1H, d, *J* 8, CHO) (Found: M⁺, 224.1413. C₁₃H₂₀O₃ requires M, 224.1413).

Compound 19. $[a]_{D}^{28} - 74.3$ (*c* 1.01, MeOH); v_{max}/cm^{-1} 1735 (OAc), 1720 (CHO); $\delta_{H}(200 \text{ MHz})$ 1.03 and 1.06 (each 3H, s, gem-Me), 1.60 (3H, s, 5-Me), 1.61 (1H, t, J 12, 2-H_{ax}), 1.80 (1H, ddd, J 12, 3.5 and 2, 2-H_{eq}), 2.04 (3H, s, OAc), 2.14 (1H, ddd-like, J 17, 9.5 and 1, 4-H_{ax}), 2.42 (1H, br dd, J 17 and 5, 4-H_{eq}), 3.13 (2H, br s, 7-H₂), 5.04 (1H, m, 3-H), 9.53 (1H, t, J 2, CHO) (Found: M⁺, 224.1403. C₁₃H₂₀O₃ requires M, 224.1413).

(1*R*)-4-[2-(Methanesulfonyloxy)ethyl]-3,5,5-trimethylcyclohex-3-enyl acetate 21

NaBH₄ (0.51 g, 13.4 mmol) was added to an ice-cooled solution of the aldehyde 19 (6.0 g, 26.8 mmol) in MeOH (50 cm³). The mixture was stirred at 0 °C for 20 min and then poured into icewater, and extracted with Et₂O. The organic layer was washed with brine and dried. Evaporation of the extracts gave a residue which, without purification, was dissolved in dry Py (10 cm³) and dry CH₂Cl₂ (20 cm³). MsCl (4.15 cm³, 53.6 mmol) was added to this solution at 0 °C for 1 h and at room temperature for 2 h. The mixture was poured into ice-water and extracted with Et₂O. The extracts were washed with aq. 5% HCl, saturated aq. NaHCO₃ and brine. Evaporation of the dried extracts gave a residue, which was purified by short CC (acetonehexane, 1:4) to afford the mesylate 21 (6.98 g, 86%) as a colourless oil; $[a]_{D}^{27}$ -34.0 (c 1.00, MeOH); v_{max}/cm^{-1} 1725 (OAc), 1355 and 1170 (OSO₂); $\delta_{\rm H}$ (300 MHz) 1.08 (6H, s, gem-Me), 1.54 (1H, t, J 12, 2-H_{ax}), 1.68 (3H, s, 5-Me), 1.75 (1H, ddd, J 12, 3.5 and 2, 2-H_{eq}), 2.03 (3H, s, OAc), 2.04 (1H, ddd-like, J 16.5, 9.5 and 1, 4-Hax), 2.34 (1H, br dd, J 16.5 and 5.5, 4-Hea), 2.53 (2H, m, 7-H₂), 3.01 (3H, s, OSO₂Me), 4.14 (2H, m, 8-H₂), 4.98 (1H, m, 3-H) (Found: M⁺, 244.1121. C₁₂H₂₀O₃S requires M, 244.1134).

(1R)-4-Ethyl-3,5,5-trimethylcyclohex-3-enyl acetate 22

A solution of the mesylate **21** (6.80 g, 22.4 mmol) in dry THF (30 cm³) was added dropwise to a stirred suspension of LiAlH₄ (2.55 g, 67 mmol) in dry THF (20 cm³) at 0 °C and the mixture was stirred at 0 °C for 10 min and refluxed for 1 h. After cooling, the excess of LiAlH₄ was decomposed by dropwise addition of water. The mixture was extracted with Et₂O and the extracts were washed with brine and dried. Evaporation off of the solvent gave the hydroxy compound which, without purification, was dissolved in dry Py (60 cm³). Ac₂O (20 cm³) was

added to this solution and the mixture was stirred at room temperature for 16 h, poured into ice–water, and extracted with Et₂O. The extracts were washed with aq. 5% HCl, saturated aq. NaHCO₃ and brine. Evaporation of the dried extracts afforded a residue, which was purified by short CC (Et₂O–hexane, 1:4) to yield the *diacetate* **22** (4.23 g, 90%) as a colourless oil; $[a]_{D}^{26}$ –66.3 (*c* 1.01, MeOH); v_{max}/cm^{-1} 1725 (OAc); $\delta_{H}(300 \text{ MHz})$ 1.08 (6H, s, gem-Me), 1.54 (1H, t, J12, 2-H_{ax}), 1.68 (3H, s, 5-Me), 0.98 (3H, t, J 7.5, 8-H₃), 1.06 (6H, s, gem-Me), 1.53 (1H, t, J 12, 2-H_{ax}), 1.61 (3H, s, 5-Me), 1.71 (1H, ddd, J 12, 3.5 and 2, 2-H_{eq}), 1.91–2.14 (3H, m, 4-H_{ax} and 7-H₂), 2.03 (3H, s, OAc), 2.29 (1H, br dd, J 16 and 5.5, 4-H_{eq}), 5.00 (1H, m, 3-H) [Found: (M – AcOH)⁺, 150.1407. C₁₁H₁₈ requires M – AcOH, 150.1409].

Epoxidation of the acetate 22

A solution of MCPBA (70%, 5.77 g, 23.5 mmol) in dry CH₂Cl₂ (80 cm³) was added to an ice-cooled solution of the diacetate **22** (4.10 g, 19.5 mmol) in dry CH₂Cl₂ (50 cm³). After being stirred at 0 °C for 3 h, the reaction mixture was diluted with CH₂Cl₂ and washed successively with aq. 1% Na₂S₂O₃, saturated aq. NaHCO₃ and brine. Evaporation of the dried solvent gave a residue, which was purified by short CC (Et₂O–hexane, 1:4) followed by low-pressure CC (Et₂O–hexane, 1:4) to afford the anti-*epoxide* **5a** (1.50 g, 34%) and the syn-*epoxide* **5b** (2.70 g, 61%) as oils.

anti-Epoxide 5a. $[a]_{D}^{29}$ –23.0 (*c* 1.00, MeOH); v_{max} /cm⁻¹ 1735 (OAc); δ_{H} (300 MHz) 1.02 (3H, t, *J* 7.5, 8-H₃), 1.07 and 1.17 (each 3H, s, *gem*-Me), 1.29 (1H, dd, *J* 13 and 8.5, 2-H_{ax}), 1.33 (3H, s, 5-Me), 1.57 and 1.86 (each 1H, dq, *J* 15 and 7.5, 7-H₂), 1.59 (1H, br dd, *J* 14.5 and 3, 2-H_{eq}), 1.74 (1H, dd, *J* 14.5 and 7, 4-H_{ax}), 2.00 (3H, s, OAc), 2.33 (1H, br dd, *J* 14.5 and 6, 4-H_{eq}), 4.85 (1H, m, 3H) (Found: M⁺, 226.1557. C₁₃H₂₂O₃ requires M, 226.1570).

syn-Epoxide 5b. $[a]_{D}^{29}$ -33.0 (*c* 1.00, MeOH); v_{max}/cm^{-1} 1725 (OAc); $\delta_{H}(200 \text{ MHz})$ 0.87 (3H, t, *J* 7.5, 8-H₃), 0.99 and 1.06 (each 3H, s, *gem*-Me), 1.15 (1H, ddd, *J* 12.5, 4 and 1.5, 2-H_{eq}), 1.21 (3H, s, 5-Me), 1.43–1.78 (2H, m, 7-H₂), 1.56 (1H, t, *J* 12.5, 2-H_{ax}), 1.73 (1H, dd, *J* 15 and 9.5, 4-H_{ax}), 1.93 (3H, s, OAc), 2.18 (1H, ddd, *J* 15, 7.5 and 1.5, 4-H_{eq}), 4.77 (1H, m, 3H) (Found: M⁺, 226.1570. C₁₃H₂₂O₃ requires M, 226.1570).

Rearrangement of epoxides 5a and 5b (Table 2)

General procedure. Epoxides 5a or 5b were treated with Lewis acid under the conditions shown in Table 2 and the reaction mixture was diluted with either CH_2Cl_2 or Et_2O and the organic layer was washed with saturated aq. NaHCO₃ and brine. Evaporation of the dried solution gave a residue which was purified by short CC (Et_2O -hexane, 3:7).

Entry 2. To a solution of 5a (340 mg, 1.5 mmol) in CH₂Cl₂ (10 cm³) was added dropwise a solution of 1 \times SnCl₄ in CH₂Cl₂ (3 cm³, 3.0 mmol) at -25 °C and the mixture was stirred at -25 °C for 2.5 h and at 0 °C for 2.5 h. The mixture was followed by the general work-up procedure to give the anti-cyclopentyl ethyl ketone 8 (trace) and the tetrasubstituted olefinic methyl ketone 10 (246 mg, 70%) as oils.

Entry 3. To a solution of **5a** (340 mg, 1.5 mmol) in CH₂Cl₂ (15 cm³) was added (*p*-BrC₆H₄)₃NSbCl₆ (123 mg, 0.1 mmol) at room temperature and the mixture was stirred at room temperature for 1.5 h. Evaporation of the reaction mixture gave a residue, which was purified by short CC (Et₂O–hexane, 3:7) to afford the anti-cyclopentyl ethyl ketone **8** (40 mg, 12%) and the *tetrasubstituted olefinic methyl ketone* **10** (242 mg, 71%) as oils.

Entry 8. To a solution of 5b (340 mg, 1.5 mmol) in CH_2Cl_2 (15 cm³) was added (*p*-BrC₆H₄)₃NSbCl₆ (123 mg, 0.1 mmol) at room temperature and the mixture was stirred at room temperature for 40 min. Evaporation of the reaction mixture gave a residue, which was purified by short CC (Et₂O–hexane, 3:7) to afford the syn-cyclopentyl ethyl ketone 13 (77 mg, 23%) and the *tetrasubstituted olefinic methyl ketone* 10 (211 mg, 62%) as oils.

anti-Cyclopentyl ethyl ketone 8. $[a]_{D}^{21}$ -6.54 (*c* 0.92, MeOH); v_{max} /cm⁻¹ 1725 (OAc), 1700 (C=O); δ_{H} (500 MHz) 0.83, 1.14 and 1.26 (each 3H, s, Me × 3), 1.01 (3H, t, *J* 7, 8-H₃), 1.54 (1H, dd, *J* 14.5 and 8.5, 4-H_β), 1.71 (1H, dd, *J* 14.5 and 4.5, 2-H_β), 2.02 (3H, s, OAc), 2.06 (1H, dd, *J* 14.5 and 8.5, 2-H_α), 2.45 (2H, qd-like, *J* 7 and 1.5, 7-H₂), 2.86 (1H, dd, *J* 15 and 8.5, 4-H_α), 5.22 (1H, m, 3H) (Found: M⁺, 226.1568. C₁₃H₂₂O₃ requires M, 226.1570).

Tetrasubstituted olefinic methyl ketone 10. $[a]_{D}^{25} - 1.69$ (*c* 1.18, MeOH); v_{max}/cm^{-1} 1730 (OAc); $\delta_{H}(500 \text{ MHz}) 0.92$ (3H, t, *J* 7.5, CH₂CH₃), 1.67 [3H, d-like, *J* 1, =C(Et)*Me*], 1.69 [3H, d-like, *J* 1, *Me*(CH₂)C=], 1.98 (3H, s, OAc), 2.10 (2H, q, *J* 7.5, CH₂CH₃) 2.16 [3H, s, CH₂C(O)CH₃], 2.19 (1H, dd, *J* 13.5 and 6) and 2.42 (1H, dd, *J* 13.5 and 8) [Me(CH₂)C=], 2.60 (1H, dd, *J* 16.5 and 4.5) and 2.70 (1H, dd, *J* 16.5 and 8) [CH₂C(O)CH₃], 5.40 (1H, tdd, *J* 8, 6 and 4.5, CHOAc); $\delta_{C}(125 \text{ MHz})$ 12.3 (CH₂CH₃), 18.1 [=C(CH₃)Et], 18.3 [CH₂(CH₃)C=], 21.0 (CH₃CO₂), 27.6 (CH₂CH₃), 30.3 [CH₂C(O)CH₃], 39.2 [CH₂(CH₃)C=], 47.8 [CH₂C(O)CH₃], 69.3 [CH₂(OAc)CH], 122.7 [CH₂(CH₃)C=], 134.1 [=C(CH₃)Et], 170.1 (CH₃CO₂), 205.7 [CH₂C(O)CH₃] (Found: M⁺, 226.1566. C₁₃H₂₂O₃ requires M, 226.1570).

syn-Cyclopentyl ethyl ketone 13. $[a]_{21}^{21}$ –25.0 (*c* 1.00, MeOH); v_{max} /cm⁻¹ 1725 (OAc), 1700 (C=O); δ_{H} (500 MHz) 0.94, 1.10, 1.14 (each 3H, s, Me × 3), 1.03 (3H, t, *J* 7, 8-H₃), 1.64 (1H, dd, *J* 14.5 and 3.5, 2-H_β), 2.04 (3H, s, OAc), 2.06 (1H, dd, 14.5 and 8.5, 4-H_α), 2.12 (1H, dd, *J* 14.5 and 9, 2-H_α), 2.43 and 2.52 (each 1H, dq, *J* 18.5 and 7, 7-H₂), 2.55 (1H, dd, *J* 14.5 and 6, 4-H_β), 5.15 (1H, m, 3H) (Found: M⁺, 226.1570. C₁₃H₂₂O₃ requires M, 226.1570).

(S)-Methyl 2-[(diethoxyphosphoryl)sulfanyl]butanoate 26

To a solution of diethyl phosphite (5.0 g, 0.36 mol) in dry benzene (250 cm³) was added sodium metal (8.5 g, 0.37 mol), and the mixture was stirred at room temperature for 2 h. After sulfur (11.6 g, 0.36 mol) was added to it, the reaction mixture was stirred at room temperature overnight. To the reaction mixture was added, over a 20 min period, a solution of methyl 2-bromobutyrate (65.16 g, 0.36 mol) in benzene (50 cm³), and then the mixture was refluxed for 3 h and the resulting precipitate filtered. Evaporation and distillation under reduced pressure of the filtrate gave *butanoate* **26** (48.5 g, 50%) as a pale yellow oil; bp 119–121 °C/1 mmHg; v_{max} /cm⁻¹ 1737 (C=O), 1252 (P=O); $\delta_{\rm H}(300 \text{ MHz})$, 1.03 (3H, t, *J* 7.5, CHCH₂CH₃), 1.37 (6H, t-like, *J* 7, OCH₂CH₃ × 2), 1.82–2.07 (2H, m, CHCH₂CH₃), 3.76 (3H, s, CO₂Me), 3.81 (1H, ddd, *J* 13, 7.5 and 6.5, CHCH₂CH₃), 4.11– 4.26 (4H, m, OCH₂CH₃ × 2) (Found: M⁺, 270.0691. C₉H₁₉-O₅SP requires M, 270.0689).

(2E/Z)-2-Ethyl-5,5-dimethoxy-3-methylpent-2-enol 27 and 28

BuLi (1.68 mol dm⁻³ in hexane; 35.7 cm³, 0.06 mol) was added to diisopropylamine (8.41 cm³, 0.06 mol) at 0 °C and the mixture was diluted with dry THF (25 cm³) at 0 °C. To this LDA solution was added dropwise a solution of the butanoate 26 (12.96 g, 0.048 mol) in dry THF (30 cm³) at -78 °C, and the solution was stirred at -78 °C for 30 min. A solution of the ketone 24 (5.28 g, 0.04 mol) in dry THF (15 cm³) was added to the reaction mixture at -78 °C, and the solution was stirred at -78 °C for 1 h and at room temperature for 30 min. After being quenched with saturated aq. NH₄Cl, the mixture was extracted with Et₂O. The extracts were washed with brine, dried and evaporated to give a residue which was purified by CC (Et₂Ohexane, 1:4) to afford the conjugated ester 25 (3.83 g, 43%). Subsequently, a solution of 25 (3.36 g, 15 mmol) in dry Et_2O (15 cm³) was added dropwise to a stirred suspension of LiAlH₄ (0.68 g, 18 mmol) in dry Et_2O (30 cm³) at 0 °C and the mixture was stirred at 0 °C for 20 min. The excess of LiAlH₄ was decomposed by the dropwise addition of water. The mixture was extracted with Et₂O and the extracts were washed with brine. Evaporation of the dried extracts gave a residue which was purified by short CC (acetone-hexane, 1:9) to afford the E-*alcohol* **27** (1.26 g, 45%) and the Z-*alcohol* **28** (1.04 g, 37%) as colourless oils, respectively.

E-Alcohol 27. v_{max}/cm^{-1} 3611 and 3465 (OH); $\delta_{H}(500 \text{ MHz}; C_6D_6)$ 1.00 (3H, t, *J* 7.5, CH₂CH₃), 1.71 [3H, s, =C(CH₃)CH₂], 2.21 (2H, q, *J* 7.5, CH₂CH₃), 2.43 [2H, d, *J* 5.5, =C(CH₃)CH₂], 3.14 (6H, s, OMe × 2), 3.99 (2H, br s-like, CH₂OH), 4.43 [1H, t, *J* 5.5, CH(OMe)₂] (Found: M⁺, 188.1400. C₁₀H₂₀O₃ requires M, 188.1413).

Z-Alcohol 28. $v_{\text{max}}/\text{cm}^{-1}$ 3455 (OH); $\delta_{\text{H}}(500 \text{ MHz}; \text{ }C_6\text{D}_6)$ 0.99 (3H, t, J 7.5, CH₂CH₃), 1.58 [3H, s, =C(CH₃)CH₂], 2.18 (2H, q, J 7.5, CH₂CH₃), 2.39 [2H, d, J 5.5, =C(CH₃)CH₂], 3.02 (6H, s, OMe × 2), 4.10 [2H, br s, CH₂OH], 4.24 [1H, t, J 5.5, CH(OMe)₂] (Found: M⁺, 188.1408. C₁₀H₂₀O₃ requires M, 188.1413).

(3Z)-4-Chloromethyl-1,1-dimethoxy-3-methylhex-3-ene 30

MsCl (0.62 cm³, 8.0 mmol) was added to a solution of the Z-alcohol **28** (1.00 g, 5.3 mmol) in dry Py (3 cm³) at 0 °C and the mixture was stirred at 0 °C for 30 min. The mixture was poured into ice–water and extracted with Et₂O. The extracts were washed with diluted aq. oxalic acid, saturated aq. NaHCO₃ and brine. Evaporation of the dried extracts gave a residue which was purified by short CC (acetone–hexane, 6:94) to afford the Z-chloride **30** (681 mg, 62%) as an oil; $\delta_{\rm H}(300 \text{ MHz}; C_6D_6)$ 0.86 (3H, t, J 7.5, CH₂CH₃), 1.59 [3H, s, =C(CH₃)-CH₂], 2.10 (2H, q, J 7.5, CH₂CH₃), 2.41 [2H, d, J 5.5, =C(CH₃)-CH₂], 3.09 (6H, s, OMe × 2), 4.04 (2H, s, CH₂Cl), 4.37 [1H, t, J 5.5, CH(OMe)₂] [Found: (M – OMe)⁺, 175.0883. C₉H₁₆O³⁵Cl requires M – OMe, 175.0889] [Found: (M – OMe)⁺, 177.0872. C₉H₁₆O³⁷Cl requires M – OMe, 177.0859].

(3Z)-1,1-Dimethoxy-3,4-dimethylhex-3-ene 29

Py·SO₃ (1.80 g, 11.3 mmol) was added to a solution of the Ealcohol 27 (1.06 g, 5.64 mmol) in THF (15 cm³) at 0 °C and the mixture was stirred at 0 °C for 2.5 h. After dry THF (25 cm³) was added to the reaction solution, LiAlH₄ (0.86 g, 22.6 mmol) was added to this solution at 0 °C. The mixture was stirred at room temperature for 4 h. The excess of LiAlH₄ was decomposed by the dropwise addition of water. The mixture was extracted with Et₂O and the extracts were washed with aq. 5% HCl, saturated aq. NaHCO₃ and brine. Evaporation of the dried extracts gave a residue which was purified by short CC (Et₂O-hexane, 1:9) to afford the Z-reduction product 29 (340 mg, 35%) as a colourless oil; $\delta_{\rm H}$ (300 MHz; C₆D₆) 0.95 (3H, t, J 7.5, CH₂CH₃), 1.65 and 1.68 [each 3H, s, =C(CH₃)CH₂ × 2], 2.07 (2H, q, J 7.5, CH₂CH₃), 2.36 (2H, d, J 5.5, CHCH₂), 3.33 $(6H, s, OMe \times 2), 4.39 [1H, t, J 5.5, CH(OMe)_2]$ (Found: M⁺, 172.1466. C₁₀H₂₀O₂ requires M, 172.1464).

(3E)-3,4-Dimethylhex-3-enal 32

To a solution of the Z-chloride **30** (681 mg, 3.3 mmol) in dry THF (30 cm³) was added LiAlH₄ (250 mg, 6.6 mmol) at 0 °C and the mixture was refluxed for 1 h. After cooling, the excess of LiAlH₄ was decomposed by wet silica gel, and the reaction mixture was filtered through Celite. Evaporation of the filtrates gave the crude products which, without purification, were dissolved in THF (8 cm³) and a solution of PTSA (60 mg) in THF (3 cm³) was added to it. After being stirred at room temperature for 5 h, the reaction mixture was diluted with Et₂O and washed with saturated aq. NaHCO₃ and brine. Evaporation of the dried extracts gave the E-*aldehyde* **32** (113 mg, 27%) as a colourless oil; v_{max}/cm^{-1} 1718 (CHO); δ_{H} (300 MHz; C₆D₆) 0.83 (3H, t, J7.5, CH₂CH₃), 1.41 and 1.47 [each 3H, br s, =C(CH₃)CH₂ × 2], 1.89 (2H, q, J7.5, CH₂CH₃), 2.67 (2H, br d, J 2.5, CH₂CHO), 9.24 (1H, t, J 2.5, CHO).

(3Z)-3,4-Dimethylhex-3-enal 31

A solution of PTSA (90 mg) in THF (5 cm³) was added to a solution of the Z-reduction product **29** (340 mg, 2.0 mmol) in

THF (1 cm³) and the mixture was stirred at room temperature for 5 h. The mixture was diluted with Et₂O and washed with saturated aq. NaHCO₃ and brine. Evaporation of the dried extracts gave the Z-aldehyde **31** (79.7 mg, 32%) as a colourless oil; v_{max}/cm^{-1} 1719 (CHO); $\delta_{\rm H}(300$ MHz, C₆D₆) 0.79 (3H, t, J 7.5, CH₂CH₃), 1.46 and 1.49 [each 3H, br s, =C(CH₃)-CH₂ × 2], 1.79 (2H, qd, J 7.5, CH₂CH₃), 2.70 (2H, dd-like, J 2.5 and 1, CH₂CHO), 9.27 (1H, t, J 2.5, CHO).

(6E)-4-Acetoxy-6,7-dimethylnon-6-en-2-one 10'

BuLi (1.68 mol dm⁻³ in hexane; 0.62 cm³, 1.04 mmol) was added to diisopropylamine (0.15 cm³, 1.04 mmol) at 0 °C. To this LDA solution was added acetone (0.07 cm³, 0.96 mmol) at -78 °C and the solution was stirred at -78 °C for 20 min. To the reaction solution was added the *E*-aldehyde **32** (101 mg, 0.8 mmol) at -78 °C and the reaction mixture was stirred at -78 °C for 1 h. After being quenched with saturated aq. NH₄Cl, the mixture was extracted with AcOEt. The extracts were washed with brine, dried and evaporated to give an oil which was dissolved in dry Py (2 cm³). Ac₂O (1 cm³) was added to this solution and the reaction mixture was stirred at room temperature for 2 h, poured into ice-water and extracted with Et₂O. The extracts were washed with aq. 5% HCl, saturated aq. NaHCO₃ and brine. Evaporation of the dried extracts gave a residue, which was purified by short CC (Et₂O-hexane, 1:1) to afford the E-acetate 10' (37 mg, 21%) as a colourless oil. Spectral properties of this acetate were in good agreement with those of the tetrasubstituted olefinic methyl ketone 10 in the rearrangement; v_{max}/cm^{-1} 1733 (OAc); $\delta_{H}(300 \text{ MHz})$ 0.92 (3H, t, J 7.5, CH₂CH₃), 1.67 and 1.68 [each 3H, br s, $=C(CH_3)CH_2 \times 2]$, 1.98 (3H, s, OAc), 1.94–2.09 (2H, m, CH₂CH₃), 2.15 [3H, s, C(O)CH₃], 2.18 (1H, dd, J 13.5 and 6) and 2.42 (1H, dd, J 13.5 and 7.5) [CH(OAc)CH₂C(Me)=], 2.59 (1H, dd, J 16 and 5) and 2.70 (1H, dd, J 16 and 8) [C(O)CH₂], 5.40 (1H, m, CHOAc) (Found: M⁺, 226.1591. C₁₃H₂₂O₃ requires M, 226.1570).

(6Z)-4-Acetoxy-6,7-dimethylnon-6-en-2-one 33

In the same manner as described for the synthesis of the *E*-acetate **10**' from the *E*-aldehyde **32**, the *Z*-aldehyde **31** (75 mg, 0.6 mmol) was reacted with acetone followed by acetylation to give the *Z*-acetate **33** (61 mg, 45%) as a colourless oil; v_{max}/cm^{-1} 1733 (OAc); $\delta_{H}(500 \text{ MHz}) 0.95$ (3H, t, *J* 7.5, CH₂CH₃), 1.62 and 1.67 [each 3H, br s, =C(CH₃)CH₂ × 2], 1.98 (3H, s, OAc), 2.02–2.13 (2H, m, CH₂CH₃), 2.15 (3H, s, CH₃CO), 2.21 (1H, dd, *J* 14 and 6.5) and 2.42 (1H, dd, *J* 14 and 7.5) [CH(OAc)-CH₂C(Me)=], 2.60 (1H, dd, *J* 16 and 4.5) and 2.70 (1H, dd, *J* 16 and 8) [C(O)CH₂], 5.37 (1H, m, CHOAc) (Found: M⁺, 226.1579. C₁₃H₂₂O₃ requires M, 226.1570).

(*E*)-4-[(4*R*)-4-*tert*-Butyldimethylsilyloxy-2,6,6-trimethylcyclohex-1-enyl]but-3-en-2-one 35

PdCl₂(PPh₃)₂ (489 mg, 0.70 mmol) was added to a solution of the enol triflate 34⁸ (9.35 g, 23 mmol), methyl vinyl ketone (9.4 cm³, 116 mmol) and Et₃N (11.4 cm³, 81 mmol) in dry DMF (65 cm³). The mixture was heated and stirred at 85 °C for 20 h. After cooling, the reaction mixture was diluted with Et₂O and washed with aq. 5% HCl, saturated aq. NaHCO3 and brine. Evaporation of the dried solution gave a residue which was purified by CC (Et₂O-hexane, 1:3) to afford the 3-silyloxy-β*ionone* **35** (6.03 g, 81%) as a pale yellow oil; $[a]_{D}^{21}$ -45.6 (c 1.14, MeOH); λ_{max} (EtOH)/nm 216, 291; v_{max} /cm⁻¹ 1666 (conj. C=O), 1604 (C=C); $\delta_{\rm H}$ (200 MHz) 0.08 (6H, s, SiMe × 2), 0.90 (9H, s, SiBu'), 1.09 and 1.11 (each 3H, s, gem-Me), 1.50 (1H, t, J 12, 2-H_{ax}), 1.68 (1H, ddd, J 12, 4 and 2, 2-H_{eo}), 1.76 (3H, s, 5-Me), 2.10 (1H, br dd, J 18 and 9, 4-H_{ax}), 2.29 (3H, s, CH₃CO), 2.30 (1H, br dd, J 18 and 6, 4-H_{eq}), 3.95 (1H, m, 3-H), 6.11 (1H, d, J 16, 8-H), 7.22 (1H, br d, J 16, 7-H) (Found: M⁺, 322.2314. C₁₉H₃₄O₂Si requires M, 322.2330).

tert-Butyldimethylsilyl (1*R*)-4-hydroxymethyl-3,5,5-trimethylcyclohex-3-enyl ether 37

Ozone gas was introduced into a stirred solution of 35 (6.00 g, 18.6 mmol) in MeOH (50 cm³) at -20 °C until the spot for compound 35 disappeared on TLC. Nitrogen gas was bubbled into the reaction solution for 10 min to remove the excess ozone gas. Aq. AcOH (15 cm³) and Zn powder (2.5 g) were added to the solution at -20 °C and then the reaction mixture was stirred at 0 °C for 30 min. The reaction mixture was filtered off, then the filtrate was concentrated to give a residue which was diluted with Et₂O, washed with saturated aq. NaHCO₃ and brine. Evaporation of the dried extracts gave 36 as an oil which, without purification, was dissolved in MeOH (50 cm³). NaBH₄ (496 mg, 13 mmol) was added to this solution at 0 °C and the reaction mixture was stirred at 0 °C for 30 min. This mixture was poured into ice-water and extracted with Et₂O. The organic layer was washed with aq. 5% HCl, saturated aq. NaHCO₃ and brine. Evaporation of the dried extracts gave a residue which was purified by CC (Et₂O-hexane, 1:1) to afford the alcohol 37 (4.19 g, 79% from 35) as a colourless oil; $[a]_{D}^{28}$ -49.0 (c 1.00, MeOH); v_{max} /cm⁻¹ 3615 and 3480 (OH); $\delta_{\rm H}(200 \text{ MHz}) 0.07 \text{ (6H, s, SiMe} \times 2), 0.90 \text{ (9H, s, SiBu'), } 1.05$ and 1.10 (each 3H, s, gem-Me), 1.47 (1H, t, J 12, 12-H_{ax}), 1.64 (1H, ddd, J 12, 4 and 2, 2-H_{ea}), 1.76 (3H, s, 5-Me), 2.04 (1H, br dd, J 17 and 9, 4-H_{ax}), 2.19 (1H, br dd, J 17 and 5.5, 4-H_{en}), 3.92 (1H, m, 3-H), 4.08 and 4.17 (each 1H, d, J 12, 7-H₂) (Found: M⁺, 284.2169. C₁₆H₃₂O₂Si requires M, 284.2173).

tert-Butyldimethylsilyl (1*R*)-3,4,5,5-tetramethylcyclohex-3-enyl ether 38

Py·SO₃ (5.60 g, 35.0 mmol) was added to a solution of the alcohol 37 (5.00 g, 17.6 mmol) in THF (50 cm³) at 0 °C and the mixture was stirred at 5 °C for 45 h. After dry THF (50 cm³) was added to the reaction solution, LiAlH₄ (4.01 g, 105 mmol) was added to this solution at 0 °C. The mixture was stirred at 0 °C for 1 h and at room temperature for 4 h. The excess of LiAlH₄ was decomposed by the dropwise addition of water. The mixture was extracted with Et₂O and the extracts were washed with aq. 5% HCl, saturated aq. NaHCO₃ and brine. Evaporation of the dried extracts gave a residue which was purified by short CC (Et₂O-hexane, 3:97) to afford the silyl ether 38 (4.43 g, 94%) as a colourless oil; $[a]_{D}^{28}$ -55.4 (c 1.01, MeOH); $\delta_{\rm H}(300 \text{ MHz}) 0.07 \text{ (6H, s, SiMe} \times 2)$, 0.90 (9H, s, SiBu'), 0.99 and 1.01 (each 3H, s, gem-Me), 1.44 (1H, t, J 12, 2-H_{ax}), 1.54 and 1.58 (each 3H, br s, 5-Me and 6-Me), 1.62 (1H, ddd, J 12, 3.5 and 2, 2- H_{eq}), 1.99–2.20 (2H, m, 4- H_2), 3.90 (1H, m, 3-H) (Found: M⁺, 268.2204. C₁₆H₃₂OSi requires M, 268.2224).

(1R)-3,4,5,5-Tetramethylcyclohex-3-enyl acetate 39

Aq. 47% HF (15 cm³) was added to a solution of the silvl ether 38 (4.34 g, 16.5 mmol) in THF (50 cm³). The mixture was stirred at room temperature for 10 min and then neutralized with saturated aq. NaHCO3. The organics were extracted with AcOEt and washed with saturated aq. NaHCO₃ and brine. Evaporation of the dried solution gave the alcohol, which without purification was dissolved in dry Py (30 cm³). Ac₂O (10 cm³) was added to this solution and the reaction mixture was stirred at room temperature for 16 h, poured into ice-water and extracted with Et₂O. The extracts were washed with aq. 5% HCl, saturated aq. NaHCO₃ and brine. Evaporation of the dried extracts gave a residue which was purified by short CC (Et₂O-hexane, 5:95) to afford the *acetate* **39** (2.85 g, 88%) as a colourless oil; $[a]_{D}^{23}$ -61.4 (c 0.88, EtOH); v_{max} /cm⁻¹ 1719 (OAc); $\delta_{\rm H}(300 \text{ MHz})$ 1.03 and 1.06 (each 3H, s, gem-Me), 1.53 (1H, t, J 12, 2-H_{ax}), 1.57 and 1.59 (each 3H, s, 5-Me and 6-Me), 1.74 (1H, ddd, J 12, 4 and 2, 2-H_{eq}), 2.02 (1H, m, 4-H_{ax}), 2.03 (3H, s, OAc), 2.31 (1H, br dd, J 16.5 and 6, 4-H_{eq}), 5.01 (1H, m, 3-H) [Found: $(M - AcOH)^+$, 136.1230. $C_{10}H_{16}$ requires M - AcOH, 136.1253].

Epoxidation of acetate 39

In the same manner as described for MCPBA oxidation of **22**, the acetate **39** (1.94 g, 9.9 mmol) was treated with MCPBA to give oxidation products which were purified by short CC (Et₂O-CH₂Cl₂-hexane, 1:3:6) to afford the anti-*epoxide* **4a** (0.49 g, 23%) and the syn-*epoxide* **4b** (1.06 g, 51%) as colourless oils, respectively.

anti-Epoxide 4a. $[a]_{D}^{20}$ -27.5 (*c* 1.02, EtOH); v_{max} /cm⁻¹ 1730 (OAc); δ_{H} (300 MHz) 1.07 and 1.08 (each 3H, s, *gem*-Me), 1.26 and 1.33 (each 3H, s, 5-Me and 6-Me), 1.29 (1H, dd, *J* 13 and 9, 2-H_{ax}), 1.61 (1H, ddd, *J* 13, 3 and 1, 2-H_{eq}), 1.72 (1H, dd, *J* 15 and 7, 4-H_{ax}), 2.00 (3H, s, OAc), 2.35 (1H, br dd, *J* 15 and 6, 4-H_{eq}), 4.87 (1H, m, 3-H) (Found: M⁺, 212.1439. C₁₂H₂₀O₃ requires M, 212.1413).

syn-Epoxide 4b. $[a]_{\rm D}^{20}$ -22.7 (*c* 1.10, EtOH); $v_{\rm max}/\rm cm^{-1}$ 1729, 1713 (split) (OAc); $\delta_{\rm H}$ (300 MHz) 1.08 and 1.10 (each 3H, s, *gem*-Me), 1.23 and 1.30 (each 3H, s, 5-Me and 6-Me), 1.27 (1H, ddd, *J* 12, 4 and 2, 2-H_{eq}), 1.62 (1H, t, *J* 12, 2-H_{ax}), 1.83 (1H, dd, *J* 15 and 10, 4-H_{ax}), 2.00 (3H, s, OAc), 2.25 (1H, ddd, *J* 15, 8 and 2, 4-H_{eq}), 4.84 (1H, m, 3H) [Found: (M – AcOH)⁺, 152.1225. C₁₀H₁₆O requires M – AcOH, 152.1202].

Rearrangement of the anti-epoxides 4a

To a solution of **4a** (212 mg, 1.0 mmol) in CH₂Cl₂ (10 cm³) was added dropwise 47% BF₃·Et₂O (906 mg, 3 mmol) at -25 °C and the mixture was stirred at -25 °C for 4 h and at 0 °C for 3 h. The reaction mixture was diluted with CH₂Cl₂ and the organic layer was washed with saturated aq. NaHCO₃ and brine. Evaporation of the dried solution gave a residue which was purified by short CC (Et₂O–hexane, 3:17) to afford a mixture of the anti-*cyclopentyl methyl ketone* **7** and *tetrasubstituted olefinic methyl ketone* **9** (134 mg, 63%; **7**: **9** = *ca*. 1:1) as colourless oils. Spectral properties of the *anti*-cyclopentyl methyl ketone **7** were in agreement with those reported.¹²

anti-Cyclopentyl methyl ketone 7. $\delta_{\rm H}(300 \text{ MHz}) 0.88$, 1.15 and 1.28 (each 3H, s, Me × 3), 1.53 (1H, dd, *J* 15 and 3, 4-H_β), 1.72 (1H, br dd, *J* 14.5 and 4.5, 2-H_β), 2.02 (3H, s, OAc), 2.08 (1H, dd, *J* 14 and 8, 2-H_a), 2.13 (3H, s, CH₃CO), 2.86 (1H, dd, *J* 15 and 9, 4-H_a), 5.14 (1H, m, 3H).

Tetrasubstituted olefinic methyl ketone 9. $\delta_{\rm H}(300 \text{ MHz})$ 1.64 (3H, s) and 1.68 (6H, s) (=CMe × 3), 1.99 (3H, s, OAc), 2.15 [3H, s, CH₂C(O)CH₃], 2.23 (1H, br dd, J 13.5 and 6.5) and 2.42 (1H, br dd, J 13.5 and 7) (2-H₂), 2.59 (1H, dd, J 16.5 and 5) and 2.70 (1H, dd, J 16.5 and 8) (4-H₂), 5.37 (1H, m, 3-H).

Rearrangement of the syn-epoxide 4b

In the same manner as described above, **4b** (212 mg, 1.0 mmol) was treated with 47% BF₃·Et₂O (906 mg, 3.0 mmol) at -78 °C for 4 h and at -25 °C for 1 h to provide the syncyclopentyl methyl ketone **12** (134 mg, 63%) as a colourless oil. Spectral properties of the syn-cyclopentyl methyl ketone **12** were in agreement with those reported;¹² $\delta_{\rm H}$ (300 MHz) 0.99, 1.11 and 1.15 (each 3H, s, Me × 3), 1.64 (1H, dd, J 14.5 and 3.5, 2-H_β), 2.03 (3H, s, OAc), 2.04 (1H, dd, J 14.5 and 8.5, 4-H_α), 2.14 (1H, dd, J 14.5 and 9, 2-H_α), 2.16 (3H, s, CH₃CO), 2.55 (1H, dd, J 14.5 and 6, 4-H_β), 5.14 (1H, m, 3H).

(*E*)-Methyl 3-[(4*R*)-acetoxy-2,6,6-trimethylcyclohex-1-enyl]prop-2-enoate 43

A solution of TBAF (1 mol dm⁻³ in THF; 3 cm³, 3 mmol) was added to a solution of 42⁸ (1.7 g, 5.0 mmol) in dry THF (20 cm³) and the mixture was stirred at room temperature for 2 h and at 80 °C for 2 h. The reaction mixture was diluted with AcOEt and washed with brine. Evaporation of the dried solvent gave a residue which was purified by short CC (acetone– hexane, 1:9) to afford the hydroxy compound. This was dissolved in dry Py (10 cm³) and Ac₂O (5 cm³) was added to it. The reaction mixture was stirred at room temperature for 16 h, poured into ice–water and extracted with Et₂O. The extracts were washed with aq. 5% HCl, saturated aq. NaHCO₃ and brine. Evaporation of the dried extracts gave a residue which was purified by short CC (Et₂O–hexane, 1:4) to afford **43** (0.81 g, 71% from **42**) as a colourless oil; $v_{\rm max}/\rm cm^{-1}$ 1718 (OAc and CO₂Me); $\delta_{\rm H}(300$ MHz) 1.10 and 1.14 (each 3H, s, gem-Me), 1.59 (1H, t, J 12, 2-H_{ax}), 1.76 (3H, s, 5-Me), 1.79 (1H, ddd, J 12, 3.5 and 2, 2-H_{eq}), 2.05 (3H, s, OAc), 2.14 (1H, br dd, J 17.5 and 9.5, 4-H_{ax}), 2.49 (1H, br dd, J 17.5 and 6, 4-H_{eq}), 3.77 (3H, s, CO₂Me), 5.04 (1H, m, 3-H), 5.83 (1H, d, J 16, 8-H), 7.36 (1H, d, J 16, 7-H) (Found: M⁺, 266.1519. C₁₅H₂₂O₄ requires M, 266.1519).

(1*R*)-3,5,5-Trimethyl-4-phenylcyclohex-3-enyl acetate 45

Phenyllithium (1.8 mol dm⁻³ in cyclohexane–Et₂O; 7:3; 3.33 cm³, 6 mmol) was added to a solution of 15 (1.14 g, 5 mmol) in dry THF (20 cm³) at -78 °C and the reaction mixture was stirred for 2 h at -78 °C. The reaction was quenched with saturated aq. NH₄Cl and the mixture was extracted with Et₂O. The extracts were washed with brine, dried and evaporated to give a residue, which was dissolved with MeOH (10 cm³). PTSA (10 mg) was added to this solution and the mixture was stirred at room temperature for 1 h. After evaporation off of the MeOH, the residue was extracted with AcOEt. The extracts were washed with saturated aq. NaHCO3 and brine, dried and evaporated to give the diol, which was dissolved in dry Py (7 cm³). Ac₂O (5 cm³) was added to this solution and the reaction mixture was stirred at room temperature for 16 h, poured into ice-water, and extracted with Et₂O. The extracts were washed with aq. 5% HCl, saturated aq. NaHCO₃ and brine. Evaporation of the dried extracts gave a residue which was purified by short CC (Et₂O-hexane, 1:4) to afford the acetoxy compound (quant.). The acetoxy compound (1.15 g, 4.17 mmol) was dissolved in dry Py (15 cm³). Phosphorus oxychloride (2.33 cm³) was added slowly to the stirred reaction mixture and the mixture was stirred at 75 °C for 16 h. After cooling, the reaction mixture was cautiously poured into icewater and extracted with Et₂O. The extracts were washed with aq. 5% HCl, saturated aq. NaHCO₃ and brine. Evaporation of the dried extracts gave a residue which was purified by short CC (Et₂O-hexane, 1:4) to afford **45** (0.86 g, 80% from **15**); v_{max} /cm⁻¹ 1725 (OAc), 1600 (Ph); δ_{H} (300 MHz) 0.89, 1.10 and 1.30 (each 3H, s, Me × 3), 1.71 (1H, t, J 12, 2-H_{ax}), 1.86 (1H, ddd, J 12, 4 and 2, 2-H_{eq}), 2.08 (3H, s, OAc), 2.16 (1H, dddlike, J 16.5, 9.5 and 1, 4-H_{ax}), 2.48 (1H, ddd, J 16.5, 6 and 1.5, 4-H_{eq}), 5.19 (1H, m, 3-H), 6.98 (2H, m) and 7.28 (3H, m) (Ar-H) [Found: $(M + H)^+$, 259.1672. $C_{17}H_{23}O_2$ requires M + H, 259.1699].

(1*R*)-3,5,5-Trimethyl-4-acetoxymethylcyclohex-3-enyl acetate 47

Aq. 47% HF (7 cm³) was added to a solution of the silyl alcohol 37 (1.1 g, 3.87 mmol) in THF (20 cm³). The mixture was stirred at room temperature for 1 h and neutralized with saturated aq. NaHCO₃. The organics were extracted with AcOEt and washed with saturated aq. NaHCO₃ and brine. Evaporation of the dried solution gave the diol, which without purification was dissolved in dry Py (10 cm3). Ac2O (4 cm3) was added to the reaction and the mixture was stirred at room temperature for 16 h, poured into ice-water and extracted with Et₂O. The extracts were washed with aq. 5% HCl, saturated aq. NaHCO₃ and brine. Evaporation of the dried extracts gave a residue, which was purified by short CC (Et₂O-hexane, 15:85) to afford the diacetate 47 (0.41 g, 42%) as a colourless oil; $[a]_D^{27}$ -50.0 (c 1.02, MeOH); v_{max} /cm⁻¹ 1726 (OAc); δ_H (300 MHz) 1.06 and 1.08 (each 3H, s, gem-Me), 1.59 (1H, t, J 12, 2-H_{ax}), 1.70 (3H, s, 5-Me), 1.76 (1H, ddd, J 12, 4 and 2, 2-H_{eq}), 2.04 and 2.05 (each 3H, s, OAc × 2), 2.11 (1H, ddd, J 17, 9 and 1, 4-H_{ax}), 2.43 (1H, ddd, J 17, 6 and 1, 4-Hea), 4.59 (2H, s, CH2OAc), 5.04 (1H, m, 3-H).

tert-Butyldimethylsilyl (1*R*)-4-*tert*-butyldimethylsilyloxymethyl-3,5,5-trimethylcyclohex-3-enyl ether 49

TBSC1 (0.79 g, 5.25 mmol) was added to a stirred solution of the alcohol **37** (1.42 g, 5 mmol), Et₃N (0.76 cm³, 5.5 mmol) and DMAP (0.61 g, 5 mmol) in dry CH₂Cl₂ (15 cm³) at room temperature. The mixture was stirred at room temperature for 3 h, poured into ice–water and extracted with Et₂O. The extracts were washed successively with aq. 5% HCl, saturated aq. NaHCO₃ and brine. Evaporation of the dried extracts gave a residue which was purified by short CC (Et₂O–hexane, 1:9) to afford **49** (1.56 g, 78%) as a colourless oil; $\delta_{\rm H}(200 \text{ MHz}) 0.07$ (12H, s, SiMe₂ × 2), 0.90 (18H, s, SiBu^t × 2), 1.04 and 1.06 (each 3H, s, gem-Me), 1.45–1.70 (2H, m, 2-H₂), 1.68 (3H, s, 5-Me), 1.95–2.25 (2H, m, 4-H₂), 3.93 (1H, m, 3-H), 4.09 (2H, br s, 7-H₂).

(1*R*)-4-(2-Acetoxyethyl)-3,5,5-trimethylcyclohex-3-enyl acetate 51

Ac₂O (1 cm³) was added to a solution of **20** (96 mg, 0.42 mmol) in dry Py (1 cm³) and the reaction mixture was stirred at room temperature for 1 h, poured into ice–water, and extracted with Et₂O. The extracts were washed with aq. 5% HCl, saturated aq. NaHCO₃ and brine. Evaporation of the dried extracts gave a residue, which was purified by short CC (acetone– hexane, 1:4) to afford **51** (114 mg, quantitatively) as a colourless oil; v_{max} /cm⁻¹ 1728 (OAc); δ_{H} (300 MHz) 1.08 (6H, s, gem-Me), 1.53 (1H, t, J 12, 2-H_{ax}), 1.68 (3H, s, 5-Me), 1.74 (1H, ddd, J 12, 3.5 and 2, 2-H_{eq}), 2.03 (1H, br dd, J 16 and 10, 4-H_{ax}), 2.03 and 2.05 (each 3H, s, OAc × 2), 2.26–2.47 (3H, m, 4-H_{eq} and 7-H₂), 4.01 (2H, t, J 8.5, 8-H₂), 4.99 (1H, m, 3-H) [Found: (M + H)⁺, 269.1736. C₁₅H₂₅O₄ requires M + H, 269.1754].

3-[(4*R*)-4-Acetoxy-2,6,6-trimethylcyclohex-1-enyl]propionitrile 53

MsCl (0.23 cm³, 3.0 mmol) was added to a solution of **20** (337 mg, 1.5 mmol) in dry Py (3 cm³) at 0 °C and the mixture was stirred at room temperature for 2 h, poured into ice-water, and extracted with Et_2O . The extracts were washed with aq. 5% HCl, saturated aq. NaHCO3 and brine. Evaporation of the dried extracts gave a residue, which was purified by short CC (Et_2O -hexane, 2:3) to afford the mesylate (quantitatively). KCN (3.24 g, 50 mmol) was added to a solution of the mesylate (3.79 g, 12.5 mmol) and 18-crown-6 (330 mg, 1.25 mmol) in dry DMSO (30 cm³) at room temperature and the mixture was stirred vigorously and warmed at 80 °C for 16 h. Then the mixture was poured into ice-water carefully and extracted with Et₂O. The extracts were washed with brine. Evaporation of the dried extracts gave a residue, which was purified by short CC (Et₂O-hexane, 3:7) to afford 53 (2.34 g, 80%) as a colourless oil; ν_{max}/cm⁻¹ 2247 (CN), 1731 (OAc); δ_H(300 MHz) 1.08 (6H, s, gem-Me), 1.54 (1H, t, J 12, 2-H_{ax}), 1.67 (3H, s, 5-Me), 1.74 (1H, ddd, J 12, 3.5 and 2, 2-H_{eq}), 2.03 (3H, s, OAc), 2.05 (1H, br dd, J 16.5 and 9, 4-H_{ax}), 2.30-2.53 (5H, m, 4-H_{eq}, 7-H₂ and 8-H₂), 4.98 (1H, m, 3-H) [Found: (M + H)⁺, 236.1628. C₁₄H₂₂O₂N requires M + H, 236.1652].

(1*R*)-4-(3-Acetoxypropyl)-3,5,5-trimethylcyclohex-3-enyl acetate 54

A solution of DIBAL-H (2.44 cm³, 13.7 mmol) in dry hexane (5 cm³) was added to a solution of **53** (805 mg, 3.43 mmol) in dry Et₂O (10 cm³) at 0 °C and the mixture was stirred at 0 °C for 1 h. The excess DIBAL-H was destroyed by an addition of moist silica gel (SiO₂-H₂O, 5:1) and the mixture was filtered through Celite. Evaporation of the dried filtrate gave a residue, which was dissolved in MeOH (10 cm³). NaBH₄ (127 mg, 3.34 mmol) was added to the solution at 0 °C and this was stirred at 0 °C for 30 min. After evaporation of MeOH, the residue was purified by short CC (acetone–hexane, 1:4) to afford the diol and then this compound was dissolved in dry Py (10 cm³). Ac₂O (5

cm³) was added to the reaction mixture at room temperature and the mixture was stirred at room temperature for 16 h, poured into ice–water, and extracted with Et₂O. The extracts were washed with aq. 5% HCl, saturated aq. NaHCO₃ and brine. Evaporation of the dried extracts gave a residue, which was purified by short CC (Et₂O–hexane, 1:4) to afford **54** (448 mg, 46%) as a colourless oil; v_{max}/cm^{-1} 1728 (OAc); $\delta_{H}(300$ MHz) 1.05 and 1.06 (each 3H, s, *gem*-Me), 1.53 (1H, t, *J* 12, 2-H_{ax}), 1.61 (3H, s, 5-Me), 1.62–1.76 (3H, m, 2-H_{eq} and 8-H₂), 1.94–2.14 (3H, m, 4-H_{ax} and 7-H₂), 2.03 and 2.06 (each 3H, s, OAc × 2), 2.31 (1H, br dd, *J* 17 and 6, 4-H_{eq}), 4.06 (2H, t, *J* 6.5, 9-H₂), 5.00 (1H, m, 3-H) [Found: (M + H)⁺, 283.1914. C₁₆H₂₇O₄ requires M + H, 283.1911].

Epoxidation of compounds 40, 43, 45, 47, 49, 51 and 54

In the same manner as described for MCPBA oxidation of 22, the compounds 40,¹⁰ 43, 45, 47, 49, 51 and 54 were treated with MCPBA to give oxidation products. Reaction conditions, purification methods and yields of products are listed in Table 3.

anti-Epoxide 41a. λ_{max} (EtOH)/nm 230; v_{max} /cm⁻¹ 1730 (OAc), 1677 (conj. C=O); δ_{H} (200 MHz) 0.94 and 1.05 (each 3H, s, *gem*-Me), 1.20 (3H, s, 5-Me), 1.38 (1H, dd, *J* 13 and 11, 2-H_{ax}), 1.55 (1H, dd, *J* 13, 3.5 and 2, 2-H_{eq}), 1.82 (3H, d, *J* 1.5, 9-Me), 1.86 (1H, dd, *J* 14 and 9, 4-H_{ax}), 2.02 and 2.13 (each 3H, s, OAc × 2), 2.37 (1H, br dd, *J* 14 and 5, 4-H_{eq}), 2.58, 3.62 (each 1H, d, *J* 18.5, 7-H₂), 4.82 (2H, d, *J* 6, 11-H₂), 4.86 (1H, m, 3-H), 6.58 (1H, td-like, *J* 6 and 1.5, 10-H) (Found: M⁺, 352.1895. C₁₉H₂₈O₆ requires M, 352.1884).

syn-Epoxide 41b. λ_{max} (EtOH)/nm 234; v_{max} /cm⁻¹ 1730 (OAc), 1680 (conj. C=O); δ_{H} (200 MHz) 0.97 and 1.05 (each 3H, s, *gem*-Me), 1.17 (3H, s, 5-Me), 1.30 (1H, ddd, *J* 12.5, 4 and 2, 2-H_{eq}), 1.55 (1H, t, *J* 12.5, 2-H_{ax}), 1.82 (3H, d, *J* 1, 9-Me), 1.82 (1H, dd, *J* 14.5 and 10, 4-H_{ax}), 2.00 and 2.12 (each 3H, s, OAc × 2), 2.34 (1H, ddd, *J* 14.5, 8.5 and 2, 4-H_{eq}), 2.70 and 3.47 (each 1H, d, *J* 18.5, 7-H₂), 4.81 (2H, d, *J* 6, 11-H₂), 4.97 (1H, m, 3-H), 6.56 (1H, td-like, *J* 6 and 1, 10-H) (Found: M⁺, 352.1880. C₁₉H₂₈O₆ requires M, 352.1884).

anti-Epoxide 44a. λ_{max} (EtOH)/nm 218; ν_{max} /cm⁻¹ 1722 (C=O); $\delta_{\rm H}$ (200 MHz) 0.99, 1.20 and 1.21 (each 3H, s, Me × 3), 1.38 (1H, dd, *J* 13.5 and 8, 2-H_{ax}), 1.67 (1H, ddd, *J* 13.5, 3.5 and 1, 2-H_{eq}), 1.79 (1H, dd, *J* 15 and 5, 4-H_{ax}), 2.02 (3H, s, OAc), 2.41 (1H, br dd, *J* 15 and 5, 4-H_{eq}), 3.76 (3H, s, CO₂Me), 4.73 (1H, m, 3-H), 6.05 (1H, d, *J* 15.5, 8-H), 7.20 (1H, d, *J* 15.5, 7-H) [Found: (M + H)⁺, 283.1560. C₁₅H₂₃O₅ requires M + H, 283.1546].

syn-Epoxide 44b. λ_{max} (EtOH)/nm 219; ν_{max} /cm⁻¹ 1723 (C=O); $\delta_{\rm H}$ (200 MHz) 0.99, 1.18 and 1.26 (each 3H, s, Me × 3), 1.36 (1H, ddd, *J* 12.5, 4.5 and 1.5, 2-H_{eq}), 1.66 (1H, t, *J* 12.5, 2-H_{ax}), 1.87 (1H, dd, *J* 15 and 11, 4-H_{ax}), 2.02 (3H, s, OAc), 2.35 (1H, ddd, *J* 15, 7.5 and 1, 4-H_{eq}), 3.76 (3H, s, CO₂Me), 4.91 (1H, m, 3-H), 6.03 (1H, d, *J* 15.5, 8-H), 7.13 (1H, d, *J* 15.5, 7-H) [Found: (M + H)⁺, 283.1534. C₁₅H₂₃O₅ requires M + H, 283.1546].

anti-Epoxide 46a. v_{max} /cm⁻¹ 1729 (OAc); δ_{H} (300 MHz) 0.94, 0.99 and 1.05 (each 3H, s, Me × 3), 1.48 (1H, dd, *J* 13.5 and 8, 2-H_{ax}), 1.77 (1H, ddd, *J* 13.5, 3.5 and 1, 2-H_{eq}), 1.90 (1H, dd, *J* 15 and 6.5, 4-H_{ax}), 2.06 (3H, s, OAc), 2.46 (1H, ddd, *J* 15, 6 and 1, 4-H_{eq}), 5.03 (1H, m, 3-H), 7.13–7.38 (5H, m, Ph) (Found: M⁺, 274.1584. C₁₇H₂₂O₃ requires M, 274.1570).

syn-Epoxide 46b. v_{max}/cm^{-1} 1728 (OAc); $\delta_{H}(300 \text{ MHz})$ 0.94, 0.96 and 1.12 (each 3H, s, Me × 3), 1.40 (1H, ddd, J 12, 4 and 1.5, 2-H_{eq}), 1.82 (1H, t, J 12, 2-H_{ax}), 1.94 (1H, dd, J 15 and 9.5, 4-H_{ax}), 2.04 (3H, s, OAc), 2.40 (1H, ddd, J 15, 7.5 and 1.5, 4-H_{eq}), 5.03 (1H, m, 3-H), 7.07–7.36 (5H, m, Ph) (Found: M⁺, 274.1595. C₁₇H₂₂O₃ requires M, 274.1570).

anti-Epoxide 48a. $[a]_{D}^{27} - 21.4$ (*c* 1.03, MeOH); v_{max}/cm^{-1} 1734 (OAc); $\delta_{H}(300 \text{ MHz})$ 1.13 and 1.15 (each 3H, s, *gem*-Me), 1.32 (1H, dd, *J* 13 and 10.5, 2-H_{ax}), 1.39 (3H, s, 5-Me), 1.59 (1H, ddd, *J* 13, 3.5 and 2, 2-H_{eq}), 1.77 (1H, dd, *J* 14.5 and 8, 4-H_{ax}),

2.01 and 2.09 (each 3H, s, OAc \times 2), 2.39 (1H, ddd, *J* 14.5, 5.5 and 1.5, 4-H_{eq}), 4.03 and 4.41 (each 1H, d, *J* 12, 7-H₂), 4.85 (1H, m, 3-H) [Found: (M + H)⁺, 271.1549. C₁₄H₂₃O₅ requires (M + H), 271.1546].

syn-Epoxide 48b. $[a]_{D}^{27}$ – 18.6 (*c* 1.18, MeOH); v_{max} /cm⁻¹ 1733 (OAc); δ_{H} (200 MHz), 1.11 and 1.14 (each 3H, s, gem-Me), 1.29 (1H, ddd, J 12.5, 4 and 2, 2-H_{eq}), 1.36 (3H, s, 5-Me), 1.59 (1H, t, J 12.5, 2-H_{ax}), 1.82 (1H, dd, J 15 and 9.5, 4-H_{ax}), 2.02 and 2.07 (each 3H, s, OAc × 2), 2.29 (1H, ddd, J 15, 7 and 1.5, 4-H_{eq}), 3.95 and 4.52 (each 1H, d, J 12.5, 7-H₂), 4.87 (1H, m, 3-H) [Found: (M + H)⁺, 271.1544. C₁₄H₂₃O₅ requires (M + H), 271.1546].

anti-Epoxide 50a. $\delta_{\rm H}(300 \text{ MHz}) 0.03 (12\text{H}, \text{s}, \text{SiMe}_2 \times 2), 0.87$ and 0.89 (each 9H, s, SiBu' × 2), 1.05 and 1.20 (each 3H, s, *gem*-Me), 1.22 (1H, dd, *J* 12.5 and 11, 2-H_{ax}), 1.35 (3H, s, 5-Me), 1.39 (1H, ddd, *J* 12.5, 3.5 and 2, 2-H_{eq}), 1.61 (1H, dd, *J* 14 and 9, 4-H_{ax}), 2.18 (1H, ddd, *J* 14, 5 and 2, 4-H_{eq}), 3.55 and 3.88 (each 1H, d, *J* 11, 7-H₂), 3.75 (1H, dddd, *J* 11, 9, 5 and 3.5, 3-H) [Found: (M + H)⁺, 415.3086. C₂₂H₄₇O₃Si₂ requires (M + H), 415.3066].

syn-Epoxide 50b. $\delta_{\rm H}$ (300 MHz) 0.04 (12H, s, SiMe₂ × 2), 0.87 and 0.89 (each 9H, s, SiBu' × 2), 1.05 and 1.14 (each 3H, s, *gem*-Me), 1.12 (1H, ddd, *J* 12, 3.5 and 2, 2-H_{eq}), 1.35 (3H, s, 5-Me), 1.46 (1H, t, *J* 12, 2-H_{ax}), 1.80 (1H, dd, *J* 15 and 9.5, 4-H_{ax}), 2.00 (1H, ddd, *J* 15, 7 and 2, 4-H_{eq}), 3.41 and 4.04 (each 1H, d, *J* 11, 7-H₂), 3.79 (1H, dddd, *J* 12, 9.5, 7 and 3.5, 3-H) [Found: (M + H)⁺, 415.3051. C₂₂H₄₇O₃Si₂ requires M + H, 415.3066].

anti-Epoxide 52a. $v_{\text{max}}/\text{cm}^{-1}$ 1732 (OAc); $\delta_{\text{H}}(300 \text{ MHz})$ 1.07 and 1.16 (each 3H, s, *gem*-Me), 1.32 (1H, dd, *J* 14 and 6, 2-H_{ax}), 1.35 (3H, s, 5-Me), 1.62 (1H, ddd, *J* 13.5, 3.5 and 2, 2-H_{eq}), 1.77 (1H, dd, *J* 15 and 6, 4-H_{ax}), 1.92–2.14 (2H, m, 7-H₂), 2.00 and 2.05 (each 3H, s, OAc × 2), 2.36 (1H, br dd, *J* 15 and 7.5, 4-H_{eq}), 4.15 (2H, t, *J* 7.5, 8-H₂), 4.86 (1H, m, 3-H) [Found: (M + H)⁺, 285.1687. C₁₅H₂₅O₅ requires M + H, 285.1703].

 $\begin{array}{l} ({\rm M}+{\rm H})^+, 285.1687. \ {\rm C_{15}H_{25}O_5} \ {\rm requires} \ {\rm M}+{\rm H}, 285.1703]. \\ $$yn-Epoxide 52b. $$\nu_{max}/{\rm cm}^{-1}$ 1732 (OAc); $$\delta_{\rm H}(300 \ {\rm MHz})$ 1.09 \\ {\rm and } 1.12 \ ({\rm each } 3{\rm H}, {\rm s}, gem-{\rm Me}), 1.27 \ (1{\rm H}, {\rm dd}, J \ 12, 4 \ {\rm and } 1.5, \\ 2-{\rm H_{eq}}), 1.30 \ (3{\rm H}, {\rm s}, 5-{\rm Me}), 1.62 \ (1{\rm H}, {\rm t}, J \ 12, 2-{\rm H_{ax}}), 1.82 \ (1{\rm H}, \\ {\rm dd}, J \ 15 \ {\rm and } 9.5, 4-{\rm H_{ax}}), 1.99 \ (2{\rm H}, {\rm q}, J \ 7, 7-{\rm H_2}), 2.00 \ {\rm and } 2.04 \\ ({\rm each } 3{\rm H}, {\rm s}, {\rm OAc} \times 2), 2.27 \ (1{\rm H}, {\rm ddd}, J \ 15, 7.5 \ {\rm and } 1.5, 4-{\rm H_{eq}}), \\ 4.07 \ {\rm and } 4.09 \ ({\rm each } 1{\rm H}, {\rm dd}, J \ 7 \ {\rm and } 2, \ 8-{\rm H_2}), 4.83 \ (1{\rm H}, {\rm m}, \\ 3-{\rm H}) \ [{\rm Found:} \ ({\rm M} + {\rm H})^+, 285.1704. \ {\rm C_{15}H_{25}O_5} \ {\rm requires} \ {\rm M} + {\rm H}, \\ 285.1703]. \end{array}$

anti-Epoxide 55a. $v_{\text{max}}/\text{cm}^{-1}$ 1731 (OAc); $\delta_{\text{H}}(300 \text{ MHz})$ 1.07 and 1.16 (each 3H, s, *gem*-Me), 1.30 (1H, dd, *J* 13.5 and 7.5, 2-H_{ax}), 1.57 (3H, s, 5-Me), 1.60 (1H, ddd, *J* 13.5, 3.5 and 1.5, 2-H_{eq}), 1.75 (1H, dd, *J* 15 and 6.5, 4-H_{ax}), 1.66–1.86 (4H, m, 7-H₂ and 8-H₂), 2.00 and 2.04 (each 3H, s, OAc × 2), 2.35 (1H, ddd, *J* 15, 6 and 1, 4-H_{eq}), 4.03 (2H, td-like, *J* 6 and 2.5, 9-H₂), 4.86 (1H, m, 3-H) [Found: (M + H)⁺, 299.1854. C₁₆H₂₇O₅ requires M + H, 299.1860].

syn-Epoxide 55b. v_{max}/cm^{-1} 1731 (OAc); $\delta_{H}(300 \text{ MHz})$ 1.06 and 1.13 (each 3H, s, *gem*-Me), 1.20–1.30 (1H, m, 2-H_{eq}), 1.27 (3H, s, 5-Me), 1.63 (1H, t, *J* 12, 2-H_{ax}), 1.58–1.72 (4H, m, 7-H₂ and 8-H₂), 1.81 (1H, dd, *J* 15 and 9.5, 4-H_{ax}), 2.00 and 2.05 (each 3H, s, OAc × 2), 2.26 (1H, ddd, *J* 15, 7.5 and 1, 4-H_{eq}), 4.04 (2H, m, 9-H₂), 4.83 (1H, m, 3-H) [Found: (M + H)⁺, 299.1864. C₁₆H₂₇O₅ requires M + H, 299.1860].

Preparation of epoxides 58a and 58b

According to the procedure described for the epoxidation of **22**, compound **20** was treated with MCPBA to give the crude oxidation products, which were purified by short CC (acetone–hexane, 1:4) to afford the epoxy alcohols **56** (1.57 g, 97%) as colourless oils. A solution of a part of the epoxy alcohol (860 mg, 3.6 mmol) in dry CH₂Cl₂ (28 cm³) was added to a solution of NMO (620 mg, 5.3 mmol) and molecular sieves 4 Å (1.78 g) in dry CH₂Cl₂ (34 cm³) at room temperature and the mixture was stirred at room temperature for 10 min. Then TPAP (62 mg, 0.18 mmol) was added to the reaction and the

mixture was stirred at room temperature for 2 h. The mixture was filtered through Celite and the filtrate was diluted with CH₂Cl₂ and washed with aq. Na₂SO₃, brine and aq. CuSO₄. Evaporation of the dried extracts gave a residue, which was purified by short CC (acetone-hexane, 1:4) to afford 57 (0.77 g, 90%) as colourless oils. BuLi (1.63 mol dm⁻³ in hexane; 2.17 cm³, 1.33 mmol) was added to a solution of methyltriphenylphosphonium bromide (1.38 g, 3.86 mmol) in dry THF (10 cm³) at 0 °C and the mixture was stirred at 0 °C for 1 h. A solution of 57 (0.77 g, 3.21 mmol) in dry THF (10 cm³) was added to the reaction mixture at 0 °C and the mixture was stirred at 0 °C for 2 h and quenched with saturated aq. NH₄Cl. The mixture was extracted with Et₂O and the extracts were washed with brine. Evaporation of the dried extracts gave a residue, which was purified by short CC (Et₂O-hexane, 1:9) and then low pressure column chromatography (Et₂O-hexane, 3:17) to afford 58a (107 mg, 14%) and 58b (267 mg, 35%) as colourless oils, respectively.

anti-Epoxide 58a. v_{max} /cm⁻¹ 1729 (OAc); δ_{H} (300 MHz) 1.08 and 1.14 (each 3H, s, *gem*-Me), 1.29 (1H, dd, *J* 13.5 and 9, 2-H_{ax}), 1.36 (3H, s, 5-Me), 1.58 (1H, ddd, *J* 13.5, 3.5 and 1.5, 2-H_{eq}), 1.75 (1H, dd, *J* 14.5 and 7.5, 4-H_{ax}), 2.00 (3H, s, OAc), 2.31 (1H, ddt, *J* 16, 6 and 2, 7-H), 2.36 (1H, ddd, *J* 14, 6.5 and 1, 4-H_{eq}), 2.67 (1H, br dd, *J* 16 and 6.5, 7-H), 4.87 (1H, m, 3-H), 5.03 (1H, m) and 5.10 (1H, m) (9-H₂), 5.86 (1H, ddt, *J* 17.5, 10 and 6.5, 8-H) [Found: (M + H)⁺, 239.1646. C₁₄H₂₃O₃ requires M + H, 239.1648].

syn-Epoxide 58b. ν_{max} /cm⁻¹ 1730 (OAc); δ_{H} (300 MHz) 1.09 and 1.13 (each 3H, s, *gem*-Me), 1.23 (1H, ddd, *J* 12, 4 and 1.5, 2-H_{eq}), 1.32 (3H, s, 5-Me), 1.62 (1H, t, *J* 12.5, 2-H_{ax}), 1.82 (1H, dd, *J* 15 and 9.5, 4-H_{ax}), 2.00 (3H, s, OAc), 2.26 (1H, ddd, *J* 14.5, 7.5 and 1.5, 4-H_{eq}), 2.34 (1H, ddt, *J* 16, 6 and 2) and 2.64 (1H, br dd, *J* 16 and 7.5) (7-H₂), 4.84 (1H, m, 3-H), 5.00 (1H, t, *J* 1.5) and 5.07 (1H, dt, *J* 4.5 and 1.5) (9-H₂), 5.78 (1H, m, 8-H) [Found: (M + H)⁺, 239.1625. C₁₄H₂₃O₃ requires M + H, 239.1648].

Rearrangement of other epoxides

General procedure. In the same manner as described for the rearrangement of the *anti*-epoxide 4a, epoxides 41, 44, 46, 48, 50, 52, 55 and 58 were treated with 47% BF₃·Et₂O (3 equiv.) to provide each product. Reaction conditions, purification methods and yields of products are listed in Table 4.

Compound 60. λ_{max} (EtOH)/nm 219; ν_{max} /cm⁻¹ 1723 (OAc and C=O); $\delta_{H}(300 \text{ MHz})$ 0.87, 1.18 and 1.33 (each 3H, s, Me × 3), 1.58 (1H, dd, *J* 15 and 3, 4-H_β), 1.76 (1H, br dd, *J* 14.5 and 4.5, 2-H_β), 2.03 (3H, s, OAc), 2.06 (1H, dd, *J* 14.5 and 8, 2-H_α), 2.92 (1H, dd, *J* 15 and 8.5, 4-H_α), 3.81 (3H, s, CO₂Me), 5.23 (1H, m, 3-H), 6.71 (1H, d, *J* 15.5, 8-H), 7.40 (1H, d, *J* 15.5, 7-H) [Found: (M + H)⁺, 283.1559. C₁₅H₂₃O₅ requires M + H, 283.1546].

Compound 61. λ_{max} (EtOH)/nm 223; ν_{max} /cm⁻¹ 1727 (OAc), 1688 (conj. C=O); δ_{H} (300 MHz) 0.96, 1.13 and 1.21 (each 3H, s, Me × 3), 1.67 (1H, dd, *J* 14.5 and 3.5, 2-H_β), 2.05 (3H, s, OAc), 2.09 (1H, dd, *J* 14.5 and 8.5, 4-H_α), 2.17 (1H, dd, *J* 14.5 and 8.5, 2-H_α), 2.60 (1H, dd, *J* 14.5 and 6, 4-H_β), 5.18 (1H, m, 3-H), 6.73 (1H, d, *J* 15.5, 8-H), 7.45 (1H, d, *J* 15.5, 7-H) [Found: (M + H)⁺, 283.1553. C₁₅H₂₃O₅ requires M + H, 283.1546].

 $\begin{array}{l} (M + H)^+, 283.1553. \ C_{15}H_{23}O_5 \ requires \ M + H, 283.1546]. \\ \textbf{Compound 62. } \nu_{max}/cm^{-1} \ 1732 \ (OAc \ and \ C=O); \ \delta_{H}(500 \ MHz) \\ 0.87, 1.15 \ and 1.28 \ (each \ 3H, \ s, \ Me \times 3), 1.54 \ (1H, \ dd, \ J \ 15 \ and \\ 3, 4-H_{\beta}), 1.73 \ (1H, \ br \ dd, \ J \ 14 \ and \ 5, \ 2-H_{\beta}), 2.01 \ and \ 2.02 \ (each \ 3H, \ s, \ OAc \times 2), 2.08 \ (1H, \ dd, \ J \ 14 \ and \ 8, \ 2-H_{\alpha}), 2.77 \ (each \ 1H, \\ td, \ J \ 6 \ and \ 1, \ 7-H_2), 2.87 \ (1H, \ dd, \ J \ 15 \ and \ 8.5, \ 4-H_{\alpha}), 4.31 \\ and \ 4.35 \ (each \ 1H, \ dt, \ J \ 11.5 \ and \ 6.5, \ 8-H_2), \ 5.21 \ (1H, \ m, \\ 3-H) \ [Found: \ (M + H)^+, \ 285.1683. \ C_{15}H_{25}O_5 \ requires \ M + H, \\ 285.1703]. \end{array}$

Compound 63. $v_{\text{max}}/\text{cm}^{-1}$ 1733 (OAc and C=O); $\delta_{\text{H}}(500 \text{ MHz})$ 0.98, 1.11 and 1.15 (each 3H, s, Me × 3), 1.66 (1H, dd, *J* 14.5 and 3.5, 2-H_{β}), 2.02 and 2.04 (each 3H, s, OAc × 2), 2.05 (1H, dd, *J* 14.5 and 8.5, 4-H_{α}), 2.14 (1H, dd, *J* 14.5 and 8.5, 2-H_{α}),

2.55 (1H, dd, J 14.5 and 6, 4-H_{β}), 2.75 and 2.83 (each 1H, dt, J 18 and 6.5, 7-H₂), 4.33 and 4.37 (each 1H, dt, J 11.5 and 6.5, 8-H₂), 5.15 (1H, m, 3-H) [Found: (M + H)⁺, 285.1701. C₁₅H₂₅O₅ requires M + H, 285.1703].

C₁₅H₂₅O₅ requires M + H, 285.1703]. **Compound 64.** v_{max} /cm⁻¹ 1728 (OAc), 1698 (C=O); $\delta_{\rm H}$ (200 MHz) 0.84, 1.15 and 1.27 (each 3H, s, Me × 3), 1.55 (1H, dd, J 14.5 and 3, 4-H_β), 1.72 (1H, dd, J 14.5 and 4.5, 2-H_β), 1.82–1.96 (2H, m, 8-H₂), 2.02 and 2.04 (each 3H, s, OAc × 2), 2.07 (1H, dd, J 14.5 and 8, 2-H_a), 2.52 (each 1H, td, J 7 and 2.5, 7-H₂), 2.86 (1H, dd, J 14.5 and 9, 4-H_a), 4.07 (2H, t, J 6.5, 9-H₂), 5.21 (1H, m, 3-H) [Found: (M + H)⁺, 299.1842. C₁₆H₂₇O₅ requires M + H, 299.1860].

Compound 65. v_{max}/cm^{-1} 1730 (OAc and C=O); $\delta_{\rm H}$ (300 MHz) 0.95, 1.11 and 1.15 (each 3H, s, Me × 3), 1.65 (1H, dd, *J* 14.5 and 3.5, 2-H_β), 1.90 (2H, m, 8-H₂), 2.04 and 2.05 (each 3H, s, OAc × 2), 2.07 (1H, dd, *J* 14 and 8.5, 4-H_a), 2.13 (1H, dd, *J* 14.5 and 8.5, 2-H_a), 2.55 (1H, dd, *J* 14 and 7, 4-H_β), 2.41–2.65 (2H, m, 7-H₂), 4.07 (2H, t, *J* 6.5, 9-H₂), 5.15 (1H, m, 3H) [Found: (M + H)⁺, 299.1852. C₁₆H₂₇O₅ requires (M + H), 299.1860].

Compound 73. v_{max}/cm^{-1} 1732 (OAc and C=O); $\delta_{\rm H}(200 \text{ MHz})$ 1.69 (6H, s, 6-Me and 7-Me), 1.98 and 2.05 (each 3H, s, OAc × 2), 1.98–2.18 (4H, m, 8-H₂ and 9-H₂), 2.16 [3H, s, CH₂C(O)CH₃], 2.20 (1H, dd, J 13.5 and 5.5) and 2.43 (1H, dd, J 13.5 and 7.5) (5-H₂), 2.58 (1H, dd, J 16.5 and 5) and 2.72 (1H, dd, J 16.5 and 7.5) (3-H₂), 4.02 (2H, t, J 6.5, 10-H₂), 5.39 (1H, m, 4-H) [Found: (M + H)⁺, 299.1862. C₁₆H₂₇O₅ requires M + H, 299.1860].

Compound 66. $v_{\text{max}}/\text{cm}^{-1}$ 1725 (OAc), 1697 (C=O); $\delta_{\text{H}}(300 \text{ MHz})$ 0.87, 1.15 and 1.29 (each 3H, s, Me × 3), 1.55 (1H, dd, J 15 and 3.5, 4-H_β), 1.71 (1H, dd, J 14.5 and 4.5, 2-H_β), 2.02 (3H, s, OAc), 2.07 (1H, dd, J 14 and 8, 2-H_α), 2.87 (1H, dd, J 15 and 9, 4-H_α), 3.23 (2H, m, 7-H₂), 5.07 (1H, dq, J 17 and 1.5) and 5.16 (1H, dq, J 10 and 1.5) (9-H₂), 5.21 (1H, m, 3-H), 5.92 (1H, ddt, J 17, 10 and 6.5, 8-H) [Found: (M + H)⁺, 239.1636. C₁₄H₂₃O₃ requires M + H, 239.1648].

Compound 67. v_{max}/cm^{-1} 1725 (OAc), 1699 (C=O); $\delta_{H}(300 \text{ MHz})$ 0.98, 1.11 and 1.16 (each 3H, s, Me × 3), 1.65 (1H, dd, J 14.5 and 3.5, 2-H_β), 2.06 (3H, s, OAc), 2.06 (1H, dd, J 14.5 and 8.5, 4-H_α), 2.12 (1H, dd, J 14.5 and 8.5, 2-H_α), 2.55 (1H, dd, J 14.5 and 6, 4-H_β), 3.21 and 3.29 (each 1H, ddt, J 17, 6.5 and 1, 7-H₂), 5.09 (1H, dq, J 17 and 1) and 5.06 (1H, dq, J 10.5 and 1) (9-H₂), 5.17 (1H, m, 3-H), 5.94 (1H, ddt, J 17, 10.5 and 6.5, 8-H) [Found: (M + H)⁺, 239.1636. C₁₄H₂₃O₃ requires M + H, 239.1648].

Compound 74. v_{max}/cm^{-1} 1732 (OAc and C=O); $\delta_{\rm H}$ (300 MHz) 1.67 and 1.70 (each 3H, s, 6-Me and 7-Me), 1.98 (3H, s, OAc), 2.15 [3H, s, CH₂C(O)CH₃], 2.22 (1H, dd, *J* 13.5 and 6) and 2.46 (1H, dd, *J* 13.5 and 8) (5-H₂), 2.60 (1H, dd, *J* 16.5 and 5) and 2.72 (1H, dd, *J* 16.5 and 8) (3-H₂), 2.71 and 2.80 (each 1H, br dd, *J* 15 and 6.5, 8-H₂), 4.97 (1H, dq, *J* 11 and 1.5) and 4.98 (1H, dq, *J* 16 and 1.5) (10-H₂), 5.40 (1H, tdd, *J* 8, 6 and 5, 4-H), 5.70 (1H, ddt, *J* 16, 11 and 6.5, 9-H) [Found: (M + H)⁺, 239.1639. C₁₄H₂₃O₃ requires M + H, 239.1648].

Compound 68. v_{max} /cm⁻¹ 3608 and 3487 (OH), 1729 (OAc); $\delta_{H}(300 \text{ MHz})$ 1.06, 1.22 and 1.33 (each 3H, s, Me × 3), 1.48 (1H, ddd, *J* 12.5, 4.5 and 2.5, 2-H_{eq}), 1.76 (1H, t, *J* 12.5, 2-H_{ax}), 1.79 (1H, ddd, *J* 13, 4.5 and 2.5, 4-H_{eq}), 1.91 (1H, dd, *J* 13 and 11.5, 4-H_{ax}), 2.02 and 2.11 (each 3H, s, OAc × 2), 2.39 (1H, s, OH), 4.37 and 4.49 (each 1H, d, *J* 12, 7-H₂), 5.14 (1H, tt, *J* 12 and 4.5, 3-H) [Found: (M + H)⁺, 289.1673. C₁₄H₂₅O₆ requires M + H, 289.1652].

Compound 69. $v_{\text{max}}/\text{cm}^{-1}$ 3588 (OH), 1737 (OAc); $\delta_{\text{H}}(300 \text{ MHz})$ 1.05, 1.22 and 1.27 (each 3H, s, Me × 3), 1.64 (1H, ddd,

J 15, 3.5 and 2.5, 2- H_{eq}), 1.75 (1H, dt, *J* 15 and 3, 4- H_{eq}), 1.90 (1H, dd, *J* 15 and 3.5, 2- H_{ax}), 2.06 and 2.12 (each 3H, s, OAc × 2), 2.19 (1H, dd, *J* 15 and 4, 4- H_{ax}), 2.55 and 2.88 (each 1H, br s, OH), 4.47 and 4.59 (each 1H, d, *J* 12, 7- H_2), 5.18 (1H, quint., *J* 3.5, 3-H) [Found: (M + H)⁺, 289.1635. C₁₄ $H_{25}O_6$ requires M + H, 289.1652].

Compound 71. $v_{\text{max}}/\text{cm}^{-1}$ 1713 (C=O); $\delta_{\text{H}}(300 \text{ MHz}) 0.01$ (6H, s, SiMe × 2), 0.08 and 0.09 (each 3H, s, SiMe × 2), 0.87 and 0.91 (each 9H, s, SiBu'), 0.84, 1.14 and 1.26 (each 3H, s, Me × 3), 1.48 (1H, dd, *J* 14 and 3, 4-H_β), 1.63 (1H, dd, *J* 13.5 and 4.5, 2-H_β), 1.93 (1H, dd, *J* 13.5 and 7.5, 2-H_a), 2.66 (1H, dd, *J* 14 and 8, 4-H_a), 4.36 and 4.43 (each 1H, d, *J* 18, 7-H₂), 4.39 (1H, m, 3-H) [Found: (M + H)⁺, 415.3053. C₂₂H₄₇O₃Si₂ requires M + H, 415.3066].

Compound 72. v_{max}/cm^{-1} 1713 (C=O); $\delta_{H}(300 \text{ MHz})$ 0.02 (6H, s, SiMe × 2), 0.87 (9H, s, SiBu'), 0.80, 1.14 and 1.28 (each 3H, s, Me × 3), 1.51 (1H, dd, *J* 14 and 3, 4-H_β), 1.67 (1H, dd, *J* 13.5 and 4.5, 2-H_β), 1.96 (1H, dd, *J* 13.5 and 7.5, 2-H_α), 2.67 (1H, dd, *J* 14 and 8, 4-H_α), 4.23 and 4.32 (each 1H, d, *J* 19, 7-H₂), 5.21 (1H, m, 3-H) [Found: (M + H)⁺, 301.2197. C₁₆H₃₃O₃Si requires M + H, 301.2201].

Acknowledgements

We are indebted to Dr U. Hengartner, Hoffmann-La Roche Ltd., Basel, Switzerland for his gift of some (4R,6R)-4-hydroxy-2,2,6-trimethylcyclohexanone. This work partly supported by the Sasakawa Scientific Research Grant from The Japan Science Society.

References

- 1 For Part 4, see Y. Yamano, M. Mimuro and M. Ito, J. Chem. Soc., Perkin Trans. 1, 1997, 2713.
- 2 Y. Fujiwara, T. Maoka, M. Ookubo and T. Matsuno, *Tetrahedron Lett.*, 1992, **33**, 4941.
- 3 (a) T. Matsuno and M. Ookubo, *Tetrahedron Lett.*, 1981, 4659; (b) T. Matsuno, M. Ookubo, T. Nishizawa and I. Shimizu, *Chem. Pharm. Bull.*, 1984, **32**, 4309.
- 4 (a) A. Khare, G. P. Moss and B. C. L. Weedon, *Tetrahedron Lett.*, 1973, 3921; (b) T. Maoka and Y. Fujiwara, *J. Jpn. Oil. Chem. Soc.*, 1996, **45**, 667.
- 5 A. K. Chopra, A. Khare, G. P. Moss and B. C. L. Weedon, J. Chem. Soc., Perkin Trans. 1, 1988, 1383; B. C. L. Weedon, Pure Appl. Chem., 1973, 35, 113.
- 6 Y. Yamano, C. Tode and M. Ito, J. Chem. Soc., Perkin Trans. 1, 1996, 1337.
- 7 A. Rüttimann, Carotenoid Chemistry and Biochemistry, ed. G. Britton and T. W. Goodwin, Pergamon Press, Oxford, 1982, p. 71.
- 8 Y. Yamano and M. Ito, J. Chem. Soc., Perkin Trans. 1, 1993, 1599.
- 9 (a) H. Pauling, D. A. Andrews and N. C. Hindley, *Helv. Chim. Acta*, 1976, **59**, 1233; (b) G. L. Olson, H. Cheung, K. D. Morgan, R. Borer and G. Saucy, *Helv. Chim. Acta*, 1976, **59**, 567.
- 10 Y. Yamano, C. Tode and M. Ito, J. Chem. Soc., Perkin Trans. 1, 1995, 1895.
- 11 L. Lopez, G. Mele, V. Fiandanese, C. Cardelliccho and A. Nacci, *Tetrahedron*, 1994, **50**, 9097.
- 12 A. Rüttimann, G. Englert, H. Mayer, G. P. Moss and B. C. L. Weedon, *Helv. Chim. Acta*, 1983, **66**, 1939.
- 13 S. Matsui, Bull. Chem. Soc. Jpn., 1984, 57, 426.
- 14 W. J. Scott, M. R. Peña, K. Swärd, J. Stoessel and J. K. Stille, J. Org. Chem., 1985, 50, 2302.
- 15 E. J. Corey and K. Achiwa, J. Org. Chem., 1969, 34, 3667.
- 16 S. V. Ley, J. Norman, W. P. Griffith and S. P. Marsden, Synthesis, 1994, 639.
- 17 K. C. Nicolaou, C. V. C. Prasad, P. K. Somers and C. Hwang, J. Am. Chem. Soc., 1989, 111, 5330.
- 18 Y. Kita, S. Kitagaki, Y. Yoshida, S. Mihara, D. Fang, M. Kondo, S. Okamoto, R. Imai, S. Akai and H. Fujioka, *J. Org. Chem.*, 1997, 62, 4991.

Paper 8/031161 Received 27th April 1998 Accepted 12th June 1998