Carotenoids and related polyenes. Part $5 .{ }^{1}$ Lewis acid-promoted stereoselective rearrangement of 5,6-epoxy carotenoid model compounds

Yumiko Yamano, Chisato Tode and Masayoshi Ito*
Kobe Pharmaceutical University, Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan

The novel acyclic tetrasubstituted olefinic end group and the cyclopentyl end group of carotenoids were obtained by Lewis acid-promoted stereoselective rearrangement of the epoxide end group of 5,6 -epoxy carotenoids. The scope and limitation of this rearrangement were investigated.

Introduction

Crassostreaxanthin B 1 (Scheme 1), a marine carotenoid having the novel tetrasubstituted olefinic end group, was isolated from the viscera of Crassostrea gigas and its stereostructure was determined by Matsuno's group in 1992. ${ }^{2}$ However, the absolute configuration in the new end group has remained undetermined. It is conceivable that this end group is formed in nature from the epoxide end group of 5,6-epoxy carotenoids \dagger such as halocynthiaxanthin $\mathbf{2}^{3}$ by opening of the C-6-oxygen bond of the oxirane ring and subsequent migration of the methyl group at the C-1 position (route a). Thus, the absolute configuration at C- $\mathbf{3}^{\prime}$ in crassostreaxanthin B $\mathbf{1}$ is considered to be S, since chiralities at C-3 in most of the known natural epoxy carotenoids are R. On the other hand, mytiloxanthin $3^{3 b, 4}$ is also believed ${ }^{5}$ to arise from 5,6-epoxy carotenoids by cleavage of the oxirane ring at the C-5 position and successive ring contraction (a pinacolic rearrangement) (Scheme 1, route b). In a previous communication, ${ }^{6}$ we reported that treatment of the epoxide 5a, having the partial structure of the epoxy carotenoids, with Lewis acids gave the cyclopentyl ethyl ketone $\mathbf{8}$ possessing the same configuration as mytiloxanthin $\mathbf{3}$, and the acyclic tetrasubstituted olefinic methyl ketone $\mathbf{1 0}$ including the partial struc-

[^0]ture of crassostreaxanthin B 1 (Scheme 2). It supported the proposed metabolic pathway of the 5,6-epoxy carotenoids.

In order to accomplish the biomimetic synthesis of 2 and 3, we investigated the reaction of epoxides having various substituents at the C-6 position with Lewis acids. The present paper is concerned with a full account of these experiments.

Results and discussion

Rearrangement of epoxides 5a,b

It was reported ${ }^{7}$ by Rüttimann that reaction of epoxides $\mathbf{4 a}, \mathbf{b}$ (Scheme 2) with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ followed by hydrolysis gave cyclopentyl methyl ketones 6 and 11, respectively, each as a single product in up to 70% yield. Then he proposed the possible intermediates I and II deriving from 'axial' cleavage of the respective epoxides. However, the mechanism for the formation of the methyl ketone $\mathbf{6}$ from anti-epoxide $\mathbf{4 a}$ is in conflict with the proposed biosynthetic mechanism ${ }^{5}$ for mytiloxanthin 3 formation. Since substituents at the C-5 and C-6 positions of these epoxides are both methyl groups, the direction of the oxirane ring opening cannot be proved. Thus, epoxides 5a,b having an ethyl group at C-6 were treated with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$.

Epoxides 5a,b were synthesized from the known ${ }^{8}$ optically active ketone $\mathbf{1 5}$ as shown in Scheme 3. Treatment of ketone 15

Scheme 1

Table 1 Rearrangement of the α-acetylenic alcohol 17 and the α, β-unsaturated aldehyde 18 by a silyl vanadate catalyst ${ }^{a}$

Entry	Substrate	Catalyst (molar equiv.)			Reaction time (h)	Isolated yield (\%)	
		TPSV	TPS	$\mathrm{PhCO}_{2} \mathrm{H}$		18	19
1	17	0.02	0.15	0.02	23	43	48
2	17	0.02	-	0.02	6	-	96
3	17	0.02	-	-	24	-	76
4	18	0.02	-	0.02	6.5	-	95
5	18	0.02	-	-	5.5	-	85

${ }^{a}$ All reactions were carried out in refluxing xylenes.

Scheme 2
with lithium trimethylsilylacetylide gave the hydroxy compound 16 which, without purification, was deprotected and then acetylated to afford the acetate $\mathbf{1 7}$ as a single product in 94% yield from 15. Its stereochemistry was deduced from mechanistic considerations ${ }^{8}$ as shown in Scheme 3. The $\beta, \gamma-$ unsaturated aldehyde 19 was obtained by rearrangement of the α-acetylenic alcohol $\mathbf{1 7}$ using tris(triphenylsily) vanadate (TPSV) catalyst. ${ }^{9,10}$ According to the literature, ${ }^{9}$ the α-acetylenic alcohol 17 was treated with TPSV (0.02 molar equiv.), triphenylsilanol (TPS; 0.15 molar equiv.) and benzoic acid (0.02 molar equiv.) in refluxing xylenes to give the α, β - and $\beta, \gamma-$ unsaturated aldehydes 18 (43\%) and 19 (48\%) (Table 1, entry 1). Although under these reaction conditions, much of the α, β unsaturated aldehyde $\mathbf{1 8}$ remained unchanged, it was found to be converted efficiently into the desired aldehyde 19 under the conditions either without TPS (entry 4) or with TPSV only (entry 5). Thus, alcohol 17 was treated under these two conditions (entries 2 and 3). Aldehyde 19 was effectively obtained in a shorter time by the coupled use of TPS and benzoic acid (entry 2). This reaction may be envisaged to proceed via the vanadate

15

Scheme 3 Reagents and conditions: i, LiC $\equiv \mathrm{CTMS}$; ii, 10% aq. KOH; iii, $\mathrm{Ac}_{2} \mathrm{O}$, Py; iv, see Table 1; v, NaBH_{4}; vi, MsCl, Py; vii, LiAlH_{4}, THF, reflux; viii, MCPBA

Scheme 4

ester 23 as shown in Scheme 4. It is considered that the transesterification reaction $(\mathbf{1 8}+\mathrm{TPSV} \longrightarrow \mathbf{2 3})$ would be inhibited by the presence of an excess of TPS, resulting in the α, β unsaturated aldehyde 18 remaining, even after a long reaction time (entry 1).

The structures of products 18 and 19 were confirmed on the basis of their spectral data (see Experimental section). In the IR

Table 2 Rearrangement of epoxides 5a,b

Entry	Substrate	Conditions (equiv.)	Isolated yield (\%)		
			8	10	13
1	5a	$\begin{aligned} & \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(3) / \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ & -78^{\circ} \mathrm{C}, 3 \mathrm{~h} \text { to } 0^{\circ} \mathrm{C}, 1 \mathrm{~h} \end{aligned}$	31	54	-
2	5a	$\begin{aligned} & \mathrm{SnCl}_{4}(2) / \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ & -25^{\circ} \mathrm{C}, 2.5 \mathrm{~h} \text { to } 0^{\circ} \mathrm{C}, 2.5 \mathrm{~h} \end{aligned}$	trace	70	-
3	5a	$\begin{aligned} & \left(p-\mathrm{BrC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{NSbCl}_{6}(0.1) \\ & \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{rt}, 1.5 \mathrm{~h} \end{aligned}$	12	71	-
4	5b	$\begin{aligned} & \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(2) / \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ & -78^{\circ} \mathrm{C}, 1.25 \mathrm{~h} \text { to }-25^{\circ} \mathrm{C}, \\ & 1.5 \mathrm{~h} \end{aligned}$	-	49	44
5	5b	$\begin{aligned} & \mathrm{SnCl}_{4}(2) / \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ & -78^{\circ} \mathrm{C}, 2 \mathrm{~h} \end{aligned}$	-	59	14
6	5b	$\begin{aligned} & \mathrm{TiCl}_{4}(3) / \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ & -70^{\circ} \mathrm{C}, 30 \mathrm{~min} \end{aligned}$	-	15	-
7	5b	ZnCl_{2} (2)/toluene rt, 60 h	-	50	12
8	5b	$\begin{aligned} & \left(p-\mathrm{BrC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{NSbCl}_{6}(0.1) \\ & \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{rt}, 1.5 \mathrm{~h} \end{aligned}$	-	62	23

spectrum, compound 18 showed an absorption $\left(1660 \mathrm{~cm}^{-1}\right)$ due to an α, β-unsaturated aldehyde, whereas an absorption (1720 cm^{-1}) due to a saturated aldehyde appeared in compound 19 The ylidene double bond in compound 18 was determined to be the Z-form from ${ }^{1} \mathrm{H}$ NMR spectroscopy including 2D nuclear Overhauser enhancement spectroscopy (NOESY) experiments (cross-peaks between $5-\mathrm{CH}_{3}$ and $7-\mathrm{H}$)

Reduction of the formyl group in 19 with NaBH_{4} followed by mesylation gave the mesylate 21 (86% from 19), which was refluxed with LiAlH_{4} in THF and then reacetylated to afford compound $22(90 \%)$. Treatment of compound 22 with MCPBA led to a mixture of the anti-epoxide $\mathbf{5 a}(34 \%)$ and the $s y n-$ epoxide 5b (61%). The relative configurations between the acetoxy and epoxy groups in the two isomers were confirmed by their ${ }^{1} \mathrm{H}$ NMR data. ${ }^{8}$

Reaction of the anti-epoxide 5a with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (Table 2, entry 1) gave the acyclic tetrasubstituted olefinic methyl ketone 10 (54%) and the cyclopentyl ethyl ketone 8 (31\%) (Scheme 2). In this reaction, the cyclopentyl methyl ketone $\mathbf{1 4}$ arising through the intermediate I^{7} was not obtained. Thus, it was found that for epoxide 5a, cleavage of the oxirane ring at C-6 (route a) did not induce the skeletal transformation into compound $\mathbf{1 4}$, but rather caused the migration of the methyl group at $\mathrm{C}-1$ to give compound $\mathbf{1 0}$. On the other hand, the five membered ethyl ketone $\mathbf{8}$ was formed in the same pathway as the proposed biosynthetic mechanism ${ }^{5}$ of mytiloxanthin 3 (route b). Then, the same treatment (entry 4) of the syn-epoxide $\mathbf{5 b}$ provided the cyclopentyl ethyl ketone $13(44 \%)$ and compound 10 (49\%). In addition, a variety of Lewis acids were also examined as shown in Table 2. Predominant formation of the novel olefinic methyl ketone $\mathbf{1 0}$ was found by treatment of both epoxides 5a,b with SnCl_{4} (entries 2 and 5) and tris(4bromophenyl)aminium hexachloroantimonate ${ }^{11}$ (entries 3 and 8). In these cases, the anti-epoxide $\mathbf{5 a}$ showed a tendency to give compound $\mathbf{1 0}$ more selectively than the syn-epoxide $\mathbf{5 b}$ Rearrangement of the syn-epoxide $\mathbf{5 b}$ tends to proceed more rapidly than that of the anti-epoxide $\mathbf{5 a}$.

The stereostructures of the cyclopentyl ethyl ketones $\mathbf{8}$ and 13 were determined by the comparison of their ${ }^{1} \mathrm{H}$ NMR data with those of the known ${ }^{12}$ five membered methyl ketones 7 and $\mathbf{1 2}$ (Scheme 2). The structure of the novel compound $\mathbf{1 0}$ was confirmed on the basis of its spectral data (see Experimental section), which failed to prove the geometry of the tetrasubstituted double bond. Thus, it was chemically determined by the synthesis of both isomers $\mathbf{1 0}^{\prime}$ and $\mathbf{3 3}$ as shown in Scheme 5.

Reaction of the ketone 24 with phosphorothioate 26 prepared according to the literature ${ }^{13}$ and following reduction of the products gave an isomeric mixture of alcohols 27 and 28

Scheme 5 Reagents and conditions: i, (EtO$)_{2} \mathrm{P}(\mathrm{O}) \mathrm{SCH}(\mathrm{Et}) \mathrm{CO}_{2} \mathrm{Me} 26$, LDA; ii, LiAlH_{4}; iii, MsCl, Py; iv, Py $\cdot \mathrm{SO}_{3}, \mathrm{LiAlH}_{4}$; v, PTSA; vi, LDA, acetone; vii, $\mathrm{Ac}_{2} \mathrm{O}$, Py
(34% from 24; 27:28 = ca. 3:2), which was cleanly separated by column chromatography. Stereochemistries of these alcohols were determined by their NOESY measurements as shown in Scheme 5. Each of them was transformed into their respective acyclic methyl ketones $\mathbf{3 3}$ and $1 \mathbf{1 0}^{\prime}$ via the aldehydes $\mathbf{3 1}$ and $\mathbf{3 2}$ by modification of a reported ${ }^{6}$ method. Spectral properties of the E-olefinic methyl ketone $\mathbf{1 0}^{\prime}$ derived from the alcohol $\mathbf{2 8}$ were in good agreement with those of compound $\mathbf{1 0}$ obtained from rearrangement of epoxides $\mathbf{5 a}, \mathbf{b}$. In the NOESY spectra of the Z-isomer 33, cross-peaks between the methylene protons of the ethyl group and the methylene protons at the C-5 position were observed. Hence, the stereoselective formation of compound $\mathbf{1 0}$ from both the anti- and syn-epoxides $\mathbf{5 a}$ and $\mathbf{5 b}$ could be accounted for through a concerted antiperiplanar pathway.

Rearrangement of epoxides 4a,b

Rüttimann reported ${ }^{7}$ that only ring-contracted products 6 and 11 (Scheme 2) were obtained by treatment of epoxides $\mathbf{4 a}, \mathbf{b}$ with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ followed by hydrolysis. On the other hand, in the case of epoxides $\mathbf{5 a}, \mathbf{b}$, the ring contraction competed with migration of the methyl group at the $\mathrm{C}-1$ position as mentioned in the preceding section. Thus, reaction of epoxides $\mathbf{4 a}, \mathbf{b}$ with BF_{3}. OEt_{2} was reinvestigated.
Epoxides $\mathbf{4 a}, \mathbf{b}$ were effectively synthesized from the known ${ }^{8}$ triflate 34 as shown in Scheme 6. A coupling reaction ${ }^{8,14}$ of the triflate 34 with methyl vinyl ketone in the presence of a palladium catalyst gave the dienone $35(81 \%)$. Ozonolysis of the dienone 35 provided the enal 36 which, without purification, was reduced with NaBH_{4} to give the alcohol 37 (79% from 35). Deoxygenation ${ }^{15}$ of the alcohol 37 was attained by treatment with a pyridine-sulfur trioxide complex and by subsequent reduction with LiAlH_{4} to provide the compound 38 (94%), which was deprotected and then acetylated to afford the acetate $39(88 \%)$. Treatment of the compound $\mathbf{3 9}$ with MCPBA led to a mixture of anti-epoxide $\mathbf{4 a}(23 \%)$ and syn-epoxide $\mathbf{4 b}(51 \%)$.

Table 3 Epoxidation of 40, 43, 45, 47, 49, 51 and 54

Substrate	Amount of MCPBA Conditions	Purification method Eluents, proportions	Products (Yield)

Scheme 6 Reagents and conditions: i, methyl vinyl ketone, PdCl_{2} $\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}, 85^{\circ} \mathrm{C}$; ii, $\mathrm{O}_{3},-20^{\circ} \mathrm{C}$; then $\mathrm{Zn}, \mathrm{AcOH},-20^{\circ} \mathrm{C}$ to $0{ }^{\circ} \mathrm{C}$; iii, NaBH_{4}; iv, $\mathrm{SO}_{3} \cdot$ Py; then $\mathrm{LiAlH}_{4} ;$ v, 47% aq. HF; vi, $\mathrm{Ac}_{2} \mathrm{O}$, Py; vii, MCPBA

Reaction of syn-epoxide $\mathbf{4 b}$ with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ provided only the five-membered methyl ketone $\mathbf{1 2}(63 \%)$ in accordance with the results reported ${ }^{7}$ by Rüttimann. On the contrary, the same treatment of anti-epoxide $\mathbf{4 a}$ was found to give the olefinic ketone 9 together with compound $7(63 \% ; 9: 7=c a .1: 1)$.

Rearrangement of other epoxides

From the results in the preceding sessions, it is expected that this rearrangement reaction should provide an effective synthesis of optically active crassostreaxanthin B 1 as shown in Scheme 7, in which the absolute stereochemistry of the β -

Scheme 7
hydroxy group has not been confirmed. Thus, the reaction of epoxides (41, 44, 46, 48, 50, 52, 55 and 58) having several substituents at the $\mathrm{C}-6$ position with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was next studied towards the biomimetic synthesis of crassostreaxanthin B $\mathbf{1}$ as shown in Scheme 8.
(a) Preparation of epoxides 41, 44, 46, 48, 50, 52, 55 (Table 3) and 58. Treatment of compound $\mathbf{4 0}{ }^{10}$ with MCPBA, which was a key intermediate for the synthesis of halocynthiaxanthin 2, afforded anti-epoxide 41a (34%) and syn-epoxide 41b (54%).
Epoxides 44a,b were obtained from the known ${ }^{8}$ dienoate 42 by deprotection, acetylation and subsequent epoxidation (44a: 12% from 42; 44b: 31% from 42).
Epoxides 46a,b were synthesized from siloxy ketone $\mathbf{1 5}$ by reaction with phenyllithium, deprotection, acetylation, dehydration and then epoxidation (46a: 13\% from 15; 46b: 54\% from 15).

Epoxides 48a,b, 50a,b, 52a,b and 55a,b were prepared either from the alcohol $\mathbf{3 7}$ or the alcohol $\mathbf{2 0}$ as shown in Scheme 8.
Epoxides 58a,b were synthesized through the epoxy aldehyde 57 as follows. Direct preparation of $\mathbf{5 7}$ by treatment of the aldehyde 19 with MCPBA resulted in a low yield (46%) because of competition with the Baeyer-Villiger reaction. Thus, 57 was prepared from alcohol 20 by epoxidation with MCPBA followed by oxidation ${ }^{16}$ with tetrapropylammonium perruthenate (TPAP) and NMO in 87% yield for the two steps. Then, compound 57 was treated with the Wittig reagent derived from methyltriphenylphosphonium bromide and n-butyllithium to afford compounds $\mathbf{5 8 a}(14 \%)$ and $\mathbf{5 8 b}(35 \%)$.
(b) Rearrangement of epoxides $41,44,46,48,50,52,55$ and 58 (Table 4). Initially, rearrangement of epoxides 41a,b with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was examined. However, this reaction did not afford the desired olefinic compound 59 but gave a complicated mixture.
Nicolaou and his co-workers reported ${ }^{17}$ that a π-orbital placed adjacent to the epoxide unit acts as an activator of the $\mathrm{C}-\mathrm{O}$ bond cleavage in the oxirane ring. Thus, the reaction of epoxides $44 a, b$ and $46 a, b$ was next examined in order to obtain the olefinic compounds mainly. Against expectation, epoxides $44 \mathbf{a}, \mathbf{b}$ provided exclusively the five-membered compounds $\mathbf{6 0}$ (20% from 44a: 18% from 44b) and 61 (67% from 44b) formed through cleavage of the oxirane ring at the $\mathrm{C}-5$ position, whereas epoxides 46a,b gave a complicated mixture.

As rearrangement of epoxides $\mathbf{4}$ and 5 afforded the olefinic compounds $\mathbf{9}$ and $\mathbf{1 0}$ (Scheme 2), the reaction of epoxides 48, 52 and 55, whose substituents at the C-6 position are alkyl groups having an oxygen functional group, was next examined. Treatment of epoxides $\mathbf{4 8 a}, \mathbf{b}$ with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ provided the diols $68(98 \%$ from 48a) and $69(12 \%$ from 48b), which were considered to be formed through the dioxenium ion intermediate ${ }^{18}$ 70. Thus, epoxide $\mathbf{5 0 a}$ was treated with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ to provide the five-membered compounds 71 (62%) and 72 (28%) by regioselective cleavage of the epoxide at the $\mathrm{C}-5$ position and successive skeletal rearrangement. Epoxides 52a,b also afforded the five-membered compounds 62 and 63. However, anti-epoxide 52a did not provide the expected anti-compound $\mathbf{6 2}$ but the syn-

40

46b syn-epoxide

$60 \mathrm{R}=\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Me}$
$62 \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAc}$
$64 \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAc}$
$66 \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$

$61 \mathrm{R}=\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Me}$
$63 \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAc}$
$65 \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAc}$
$67 \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$

$73 \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAc}$
$74 \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$

75

68

69

Scheme 8 Reagents and conditions: i, MCPBA; ii, TBAF; iii, $\mathrm{Ac}_{2} \mathrm{O}$, Py; iv, PhLi; v, PTSA; vi, POCl_{3}, Py, reflux; vii, 47% aq. HF; viii, TBSCl, DMAP, $\mathrm{Et}_{3} \mathrm{~N}$; ix, MsCl, Py; x, KCN, 18-crown-6, DMSO, $120^{\circ} \mathrm{C}$; xi, DIBAL-H; xii, NaBH_{4}; xiii, NMO, mol. sieves $4 \AA$ Å, TPAP; xiv, $\mathrm{MePPh}{ }_{3} \mathrm{Br}, \mathrm{BuLi}$
compound 63 in low yield (14%), whereas syn-epoxide 52b gave a mixture of compounds 62 and 63 (ca. $3: 1$) in 86% yield. Low stereoselectivity in the rearrangement of these epoxides 52a,b cannot at present be explained. On the other hand, the tetrasubstituted olefinic compound 73 (51\% from 55a; 26\% from 55b) was obtained accompanied with five-membered compounds 64 (16% from 55a) and $65(29 \%$ from 55b), and the conjugated enone 75 (16% from 55a; 13 $\%$ from 55b) formed through compound 73. These results show that decreasing the electron-withdrawing inductive effect of the oxygen atom on
the C-6 carbon atom has a tendency to cause cleavage of the oxirane ring at the $\mathrm{C}-6$ position, thus providing the olefinic compounds.

Rearrangement of epoxides $\mathbf{5 8 a}, \mathbf{b}$ with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ provided the tetrasubstituted olefinic compound 74 as a minor product (13% from 58a; 12\% from 58b) and the five-membered compounds 66 (16% from 58 a) and 67 (77% from 58b).

In summary, Lewis acid-catalysed rearrangement of 5,6epoxy carotenoid model compounds possessing the appropriate substituents provides stereoselectively the novel tetrasubsti-

Table 4 Rearrangement of other epoxides with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$

Substrate	Conditions	Purification method Eluents, Proportion	Products (Yield)

tuted olefinic compounds as the major products. Work is in progress on a biomimetic synthesis of crassostreaxanthin B $\mathbf{1}$ using this rearrangement.

Experimental

Mps were measured on a micro melting point apparatus (Yanagimoto) and are uncorrected. UV-VIS spectra were recorded on a JASCO Ubest-55 instrument. IR spectra were measured on a Shimadzu IR-27G spectrometer, or on a Shimadzu FT-IR 4000 spectrometer or a Perkin-Elmer FT-IR spectrometer, model Paragon 1000, for chloroform solutions unless otherwise stated. ${ }^{1} \mathrm{H}$ NMR spectra at 200,300 or 500 MHz were determined on a Varian XL-200, a Varian Gemini-200, a Varian Gemini-300 or a Varian VXR-500 superconducting FT-NMR spectrometer, respectively, for deuteriochloroform solutions (tetramethylsilane as internal reference). ${ }^{13} \mathrm{C}$ NMR spectrum at 125 MHz was measured on a Varian VXR-500 superconducting FT-NMR spectrometer in a deuteriochloroform solution using tetramethylsilane as an internal standard. J Values are given in Hz. Mass spectra were taken on a Hitachi M-4100 spectrometer. Optical rotations were measured on a JASCO DIP-181 polarimeter ($[\alpha]_{\mathrm{D}}$ values are in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$).

Column chromatography (CC) was performed on silica gel (Merck Art. 7734). Short column chromatography (short CC) was performed on silica gel (Merck Art. 7739) under reduced pressure. Low-pressure column chromatography was conducted on a Yamazen Low pressure Liquid Chromatography System using a Lobar column (Merck LiChroprep Si 60). Preparative TLC (PLC) was performed on silica gel plates (Merck silica gel
$60 \mathrm{~F}_{254}$ precoated plates, 0.5 mm thickness). Analytical and preparative HPLCs were carried out on Shimadzu LC-5A and 6A instruments with a UV-VIS detector, using a LiChrosorb Si-60 $(7 \mu \mathrm{~m}), 1.0 \times 30 \mathrm{~cm}$ column.

Standard work-up means that the organic layers were finally washed with brine, dried over anhydrous sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo below $30^{\circ} \mathrm{C}$ using a rotary evaporator. All operations were carried out under nitrogen or argon. Hexane refers to n-hexane.

(1R,4R,5R)-4-Ethynyl-4-hydroxy-3,3,5-trimethylcyclohexyl

 acetate 17$\mathrm{BuLi}\left(1.63 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ in hexane; $\left.40.4 \mathrm{~cm}^{3}, 66 \mathrm{mmol}\right)$ was added to a solution of TMS acetylene ($9.3 \mathrm{~cm}^{3}, 66 \mathrm{mmol}$) in dry THF $\left(60 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for a further 20 min . To this mixture was added dropwise a solution of the ketone $15^{8}(10.0 \mathrm{~g}, 44 \mathrm{mmol})$ in dry THF $\left(80 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$. After evaporation off of the THF, the residue was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed with brine, dried and evaporated to give the crude hydroxy compound 16 which, without purification, was dissolved in $\mathrm{MeOH}\left(100 \mathrm{~cm}^{3}\right)$ and aq. $10 \% \mathrm{KOH}\left(50 \mathrm{~cm}^{3}\right)$ was added to this solution and the reaction mixture was stirred at room temperature for 30 min . After evaporation off of the MeOH , the residue was extracted with AcOEt. The extracts were washed with brine, dried and evaporated to afford the diol which, without purification, was dissolved in a mixture of dry pyridine $(\mathrm{Py})\left(77.5 \mathrm{~cm}^{3}\right)$ and $\mathrm{Ac}_{2} \mathrm{O}\left(29 \mathrm{~cm}^{3}\right)$. After being stirred at room temperature for 16 h , the reaction mixture was poured into ice-water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were
washed with aq. $5 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue which was purified by short CC (acetone-hexane, $1: 4$) to afford the acetylenic alcohol 17 ($9.27 \mathrm{~g}, 94 \%$) as colourless crystals; mp 63.5$64.5{ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$-hexane); $[a]_{\mathrm{D}}^{27}-28.0(c 1.00, \mathrm{MeOH}) ; v_{\max } /$ $\mathrm{cm}^{-1} 3600$ and $3450(\mathrm{OH}), 3320(\mathrm{C} \equiv \mathrm{CH}), 1720(\mathrm{OAc}) ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz}) 1.08(3 \mathrm{H}, \mathrm{d}, J 6.5,5-\mathrm{Me}), 1.12$ and 1.13 (each $3 \mathrm{H}, \mathrm{s}$, gem$\mathrm{Me}), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.22(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.51(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$, $4.96(1 \mathrm{H}$, quint., $J 3,3-\mathrm{H})$ (Found: C, 69.31; H, 9.26. $\mathrm{C}_{13} \mathrm{H}_{20}{ }^{-}$ O_{3} requires $\mathrm{C}, 69.61 ; \mathrm{H}, 8.99 \%$).

Rearrangement of the α-acetylenic alcohol 17 and the α, β -

 unsaturated aldehyde 18 by a silyl vanadate catalyst (Table 1)General procedure. The reaction was conducted in the conditions shown in Table 1 and continued until a change in the TLC spots of each product was not observed. After evaporation off of the solvent, the residue was purified by short CC (acetonehexane, $3: 17$) to give the α, β-unsaturated aldehyde $\mathbf{1 8}$ or β, γ-one 19 in the yield as shown in Table 1.

Compound 18. $[\alpha]_{\mathrm{D}}^{25}-115.7$ (c 1.59, MeOH); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$ 243; $v_{\max } / \mathrm{cm}^{-1} 1725$ (OAc), 1660 (conj. CHO), 1605 ($\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 1.10(3 \mathrm{H}, \mathrm{d}, J 6.5,5-\mathrm{Me}), 1.43\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}_{\mathrm{ax}}\right)$, $1.48\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}_{\mathrm{eq}}\right), 1.68\left(1 \mathrm{H}\right.$, ddd, $J 15,12.5$ and $\left.7,4-\mathrm{H}_{\mathrm{ax}}\right)$, $1.76\left(1 \mathrm{H}, \mathrm{dd}, J 14\right.$ and $\left.5.5,2-\mathrm{H}_{\mathrm{eq}}\right), 1.88(1 \mathrm{H}, \mathrm{dd}, J 14$ and 8.5 , $\left.2-\mathrm{H}_{\mathrm{ax}}\right), 1.88\left(1 \mathrm{H}\right.$, ddd, $J 15,5.5$ and $\left.3.5,4-\mathrm{H}_{\mathrm{eq}}\right), 2.07(3 \mathrm{H}, \mathrm{s}$, OAc), $2.82(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.06(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.80(1 \mathrm{H}, \mathrm{dd}, J 8$ and $1.5,7-\mathrm{H}), 10.38(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{CHO})\left(\right.$ Found: $\mathrm{M}^{+}, 224.1413$. $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3}$ requires $\mathrm{M}, 224.1413$).

Compound 19. $[a]_{\mathrm{D}}^{28}-74.3$ (c $\left.1.01, \mathrm{MeOH}\right) ; v_{\max } / \mathrm{cm}^{-1} 1735$ $(\mathrm{OAc}), 1720(\mathrm{CHO}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.03$ and 1.06 (each 3 H , s, gem-Me), $1.60(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.61\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.80(1 \mathrm{H}$, ddd, $J 12,3.5$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.14(1 \mathrm{H}$, dddlike, $J 17,9.5$ and $\left.1,4-\mathrm{H}_{\mathrm{ax}}\right), 2.42\left(1 \mathrm{H}\right.$, br dd, $J 17$ and $\left.5,4-\mathrm{H}_{\mathrm{eq}}\right)$, $3.13\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 7-\mathrm{H}_{2}\right), 5.04(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 9.53(1 \mathrm{H}, \mathrm{t}, J 2, \mathrm{CHO})$ (Found: M^{+}, 224.1403. $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3}$ requires $\mathrm{M}, 224.1413$).

(1R)-4-[2-(Methanesulfonyloxy)ethyl]-3,5,5-trimethylcyclohex-3-enyl acetate 21

$\mathrm{NaBH}_{4}(0.51 \mathrm{~g}, 13.4 \mathrm{mmol})$ was added to an ice-cooled solution of the aldehyde $19(6.0 \mathrm{~g}, 26.8 \mathrm{mmol})$ in $\mathrm{MeOH}\left(50 \mathrm{~cm}^{3}\right)$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 20 min and then poured into icewater, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine and dried. Evaporation of the extracts gave a residue which, without purification, was dissolved in dry Py $\left(10 \mathrm{~cm}^{3}\right)$ and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right) . \mathrm{MsCl}\left(4.15 \mathrm{~cm}^{3}, 53.6 \mathrm{mmol}\right)$ was added to this solution at $0^{\circ} \mathrm{C}$ for 1 h and at room temperature for 2 h . The mixture was poured into ice-water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed with aq. $5 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue, which was purified by short CC (acetonehexane, $1: 4)$ to afford the mesylate $21(6.98 \mathrm{~g}, 86 \%)$ as a colourless oil; $[a]_{\mathrm{D}}^{27}-34.0(c 1.00, \mathrm{MeOH}) ; v_{\max } / \mathrm{cm}^{-1} 1725$ (OAc), 1355 and $1170\left(\mathrm{OSO}_{2}\right) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.08(6 \mathrm{H}, \mathrm{s}$, gem-Me), 1.54 $\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.68(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.75(1 \mathrm{H}$, ddd, $J 12,3.5$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.04(1 \mathrm{H}$, ddd-like, $J 16.5$, 9.5 and $\left.1,4-\mathrm{H}_{\mathrm{ax}}\right), 2.34\left(1 \mathrm{H}\right.$, br dd, $J 16.5$ and $\left.5.5,4-\mathrm{H}_{\mathrm{eq}}\right), 2.53$ $\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 3.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OSO}_{2} \mathrm{Me}\right), 4.14\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right), 4.98$ $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 244.1121 . \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~S}$ requires M , 244.1134).

(1R)-4-Ethyl-3,5,5-trimethylcyclohex-3-enyl acetate 22

A solution of the mesylate $21(6.80 \mathrm{~g}, 22.4 \mathrm{mmol})$ in dry THF $\left(30 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirred suspension of LiAlH_{4} $(2.55 \mathrm{~g}, 67 \mathrm{mmol})$ in dry THF $\left(20 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min and refluxed for 1 h . After cooling, the excess of LiAlH_{4} was decomposed by dropwise addition of water. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extracts were washed with brine and dried. Evaporation off of the solvent gave the hydroxy compound which, without purification, was dissolved in dry Py $\left(60 \mathrm{~cm}^{3}\right) . \mathrm{Ac}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3}\right)$ was
added to this solution and the mixture was stirred at room temperature for 16 h , poured into ice-water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed with aq. $5 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts afforded a residue, which was purified by short $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.1: 4\right)$ to yield the diacetate $22(4.23 \mathrm{~g}, 90 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}^{26}$ -66.3 (c 1.01, MeOH); $v_{\text {max }} / \mathrm{cm}^{-1} 1725(\mathrm{OAc}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz})$ $1.08\left(6 \mathrm{H}, \mathrm{s}\right.$, gem-Me), $1.54\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.68(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me})$, $0.98\left(3 \mathrm{H}, \mathrm{t}, J 7.5,8-\mathrm{H}_{3}\right), 1.06(6 \mathrm{H}, \mathrm{s}$, gem-Me), $1.53(1 \mathrm{H}, \mathrm{t}$, $\left.J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.61(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.71(1 \mathrm{H}$, ddd, $J 12,3.5$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 1.91-2.14\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{ax}}\right.$ and $\left.7-\mathrm{H}_{2}\right), 2.03(3 \mathrm{H}, \mathrm{s}$, OAc), $2.29\left(1 \mathrm{H}\right.$, br dd, $J 16$ and $\left.5.5,4-\mathrm{H}_{\mathrm{eq}}\right), 5.00(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ [Found: $(\mathrm{M}-\mathrm{AcOH})^{+}, 150.1407 . \mathrm{C}_{11} \mathrm{H}_{18}$ requires $\mathrm{M}-\mathrm{AcOH}$, 150.1409].

Epoxidation of the acetate 22

A solution of MCPBA $(70 \%, 5.77 \mathrm{~g}, 23.5 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(80 \mathrm{~cm}^{3}\right)$ was added to an ice-cooled solution of the diacetate 22 $(4.10 \mathrm{~g}, 19.5 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$. After being stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed successively with aq. $1 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried solvent gave a residue, which was purified by short $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.1: 4\right)$ followed by low-pressure $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, 1:4) to afford the anti-epoxide $5 \mathbf{a}(1.50 \mathrm{~g}, 34 \%)$ and the syn-epoxide $\mathbf{5 b}(2.70 \mathrm{~g}$, 61\%) as oils.
anti-Epoxide 5a. $[\alpha]_{\mathrm{D}}^{29}-23.0(c 1.00, \mathrm{MeOH}) ; v_{\max } / \mathrm{cm}^{-1} 1735$ $(\mathrm{OAc}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.02\left(3 \mathrm{H}, \mathrm{t}, J 7.5,8-\mathrm{H}_{3}\right), 1.07$ and 1.17 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), $1.29\left(1 \mathrm{H}\right.$, dd, $J 13$ and $\left.8.5,2-\mathrm{H}_{\mathrm{ax}}\right), 1.33$ $(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.57$ and 1.86 (each $1 \mathrm{H}, \mathrm{dq}, J 15$ and $\left.7.5,7-\mathrm{H}_{2}\right)$, $1.59\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $J 14.5$ and $\left.3,2-\mathrm{H}_{\text {eq }}\right), 1.74(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and 7 , $\left.4-\mathrm{H}_{\mathrm{ax}}\right), 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.33\left(1 \mathrm{H}, \mathrm{br} d \mathrm{~d}, J 14.5\right.$ and $\left.6,4-\mathrm{H}_{\mathrm{eq}}\right)$, $4.85(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{H})$ (Found: $\mathrm{M}^{+}, 226.1557 . \mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3}$ requires M , 226.1570).
syn-Epoxide 5b. $[\alpha]_{\mathrm{D}}^{29}-33.0(c 1.00, \mathrm{MeOH}) ; v_{\max } / \mathrm{cm}^{-1} 1725$ $(\mathrm{OAc}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.87\left(3 \mathrm{H}, \mathrm{t}, J 7.5,8-\mathrm{H}_{3}\right), 0.99$ and 1.06 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), $1.15\left(1 \mathrm{H}\right.$, ddd, $J 12.5,4$ and $\left.1.5,2-\mathrm{H}_{\mathrm{eq}}\right)$, $1.21(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.43-1.78\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 1.56(1 \mathrm{H}, \mathrm{t}, J 12.5$, $\left.2-\mathrm{H}_{\mathrm{ax}}\right), 1.73\left(1 \mathrm{H}, \mathrm{dd}, J 15\right.$ and $\left.9.5,4-\mathrm{H}_{\mathrm{ax}}\right), 1.93(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$, $2.18\left(1 \mathrm{H}\right.$, ddd, $J 15,7.5$ and $\left.1.5,4-\mathrm{H}_{\mathrm{eq}}\right), 4.77(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{H})$ (Found: $\mathrm{M}^{+}, 226.1570 . \mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $\mathrm{M}, 226.1570$).

Rearrangement of epoxides 5 a and 5 b (Table 2)

General procedure. Epoxides $\mathbf{5 a}$ or $\mathbf{5 b}$ were treated with Lewis acid under the conditions shown in Table 2 and the reaction mixture was diluted with either $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{Et}_{2} \mathrm{O}$ and the organic layer was washed with saturated aq. NaHCO_{3} and brine. Evaporation of the dried solution gave a residue which was purified by short $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.3: 7\right)$.

Entry 2. To a solution of $\mathbf{5 a}(340 \mathrm{mg}, 1.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(10 \mathrm{~cm}^{3}\right)$ was added dropwise a solution of $1 \mathrm{M} \mathrm{SnCl}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(3 \mathrm{~cm}^{3}, 3.0 \mathrm{mmol}\right)$ at $-25^{\circ} \mathrm{C}$ and the mixture was stirred at $-25^{\circ} \mathrm{C}$ for 2.5 h and at $0^{\circ} \mathrm{C}$ for 2.5 h . The mixture was followed by the general work-up procedure to give the anti-cyclopentyl ethyl ketone 8 (trace) and the tetrasubstituted olefinic methyl ketone 10 ($246 \mathrm{mg}, 70 \%$) as oils.

Entry 3. To a solution of $\mathbf{5 a}(340 \mathrm{mg}, 1.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(15 \mathrm{~cm}^{3}\right)$ was added $\left(p-\mathrm{BrC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{NSbCl}_{6}(123 \mathrm{mg}, 0.1 \mathrm{mmol})$ at room temperature and the mixture was stirred at room temperature for 1.5 h . Evaporation of the reaction mixture gave a residue, which was purified by short $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.3: 7\right)$ to afford the anti-cyclopentyl ethyl ketone $\mathbf{8}(40 \mathrm{mg}, 12 \%)$ and the tetrasubstituted olefinic methyl ketone $10(242 \mathrm{mg}, 71 \%)$ as oils.

Entry 8. To a solution of $\mathbf{5 b}(340 \mathrm{mg}, 1.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(15 \mathrm{~cm}^{3}\right)$ was added $\left(p-\mathrm{BrC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{NSbCl}_{6}(123 \mathrm{mg}, 0.1 \mathrm{mmol})$ at room temperature and the mixture was stirred at room temperature for 40 min . Evaporation of the reaction mixture gave a residue, which was purified by short $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.3: 7\right)$ to afford the syn-cyclopentyl ethyl ketone $13(77 \mathrm{mg}, 23 \%)$ and the tetrasubstituted olefinic methyl ketone 10 ($211 \mathrm{mg}, 62 \%$) as oils.
anti-Cyclopentyl ethyl ketone 8. $[a]_{\mathrm{D}}^{21}-6.54(c 0.92, \mathrm{MeOH})$; $v_{\text {max }} / \mathrm{cm}^{-1} 1725(\mathrm{OAc}), 1700(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.83,1.14$ and 1.26 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 3$), $1.01\left(3 \mathrm{H}, \mathrm{t}, J 7,8-\mathrm{H}_{3}\right), 1.54(1 \mathrm{H}, \mathrm{dd}$, $J 14.5$ and $\left.8.5,4-\mathrm{H}_{\beta}\right), 1.71\left(1 \mathrm{H}\right.$, dd, $J 14.5$ and $\left.4.5,2-\mathrm{H}_{\beta}\right), 2.02$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.06\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.8.5,2-\mathrm{H}_{a}\right), 2.45(2 \mathrm{H}$ qd-like, $J 7$ and $\left.1.5,7-\mathrm{H}_{2}\right), 2.86\left(1 \mathrm{H}\right.$, dd, $J 15$ and $\left.8.5,4-\mathrm{H}_{a}\right)$, $5.22(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{H})$ (Found: $\mathrm{M}^{+}, 226.1568 . \mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3}$ requires M, 226.1570).

Tetrasubstituted olefinic methyl ketone 10. $[a]_{\mathrm{D}}^{25}-1.69$ (c 1.18, $\mathrm{MeOH}) ; v_{\text {max }} / \mathrm{cm}^{-1} 1730(\mathrm{OAc}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.92(3 \mathrm{H}, \mathrm{t}, J 7.5$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.67[3 \mathrm{H}$, d-like, $J 1$, $=\mathrm{C}(\mathrm{Et}) \mathrm{Me}$], $1.69[3 \mathrm{H}$, d-like, $J 1$, $\left.\operatorname{Me}\left(\mathrm{CH}_{2}\right) \mathrm{C}=\right], 1.98(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.10\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ $2.16\left[3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right], 2.19(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and 6$)$ and 2.42 $(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and 8$)\left[\mathrm{Me}\left(\mathrm{CH}_{2}\right) \mathrm{C}=\right], 2.60(1 \mathrm{H}, \mathrm{dd}, J 16.5$ and $4.5)$ and $2.70(1 \mathrm{H}, \mathrm{dd}, J 16.5$ and 8$)\left[\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right], 5.40(1 \mathrm{H}$, tdd, $J 8,6$ and $4.5, \mathrm{CHOAc}) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}) 12.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $18.1\left[=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{Et}\right], 18.3\left[\mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right) \mathrm{C}=\right], 21.0\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right), 27.6$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 30.3\left[\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right], 39.2\left[\mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right) \mathrm{C}=\right], 47.8$ $\left[\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right], 69.3\left[\mathrm{CH}_{2}(\mathrm{OAc}) \mathrm{CH}\right], 122.7\left[\mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right) \mathrm{C}=\right]$, $134.1\left[=C\left(\mathrm{CH}_{3}\right) \mathrm{Et}\right], 170.1\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right), 205.7\left[\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]$ (Found: M^{+}, 226.1566. $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3}$ requires M, 226.1570).
syn-Cyclopentyl ethyl ketone 13. $[a]_{\mathrm{D}}^{21}-25.0(c 1.00, \mathrm{MeOH})$; $v_{\max } / \mathrm{cm}^{-1} 1725(\mathrm{OAc}), 1700(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.94,1.10$, 1.14 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 3$), $1.03\left(3 \mathrm{H}, \mathrm{t}, J 7,8-\mathrm{H}_{3}\right), 1.64(1 \mathrm{H}, \mathrm{dd}$, $J 14.5$ and $\left.3.5,2-\mathrm{H}_{\beta}\right), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.06(1 \mathrm{H}, \mathrm{dd}, 14.5$ and $\left.8.5,4-\mathrm{H}_{a}\right), 2.12\left(1 \mathrm{H}\right.$, dd, $J 14.5$ and $\left.9,2-\mathrm{H}_{a}\right), 2.43$ and 2.52 (each $1 \mathrm{H}, \mathrm{dq}, J 18.5$ and $\left.7,7-\mathrm{H}_{2}\right), 2.55\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.6,4-\mathrm{H}_{\beta}\right)$, $5.15(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{H})$ (Found: M ${ }^{+}$, 226.1570. $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3}$ requires M , 226.1570).

(S)-Methyl 2-[(diethoxyphosphoryl)sulfanyl]butanoate 26

To a solution of diethyl phosphite ($5.0 \mathrm{~g}, 0.36 \mathrm{~mol}$) in dry benzene ($250 \mathrm{~cm}^{3}$) was added sodium metal ($8.5 \mathrm{~g}, 0.37 \mathrm{~mol}$), and the mixture was stirred at room temperature for 2 h . After sulfur $(11.6 \mathrm{~g}, 0.36 \mathrm{~mol})$ was added to it, the reaction mixture was stirred at room temperature overnight. To the reaction mixture was added, over a 20 min period, a solution of methyl 2-bromobutyrate ($65.16 \mathrm{~g}, 0.36 \mathrm{~mol}$) in benzene ($50 \mathrm{~cm}^{3}$), and then the mixture was refluxed for 3 h and the resulting precipitate filtered. Evaporation and distillation under reduced pressure of the filtrate gave butanoate $\mathbf{2 6}(48.5 \mathrm{~g}, 50 \%)$ as a pale yellow oil; bp $119-121^{\circ} \mathrm{C} / 1 \mathrm{mmHg} ; v_{\max } / \mathrm{cm}^{-1} 1737(\mathrm{C}=\mathrm{O}), 1252(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}), 1.03\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CHCH}_{2} \mathrm{CH}_{3}\right), 1.37(6 \mathrm{H}, \mathrm{t}$-like, $J 7, \mathrm{OCH}_{2} \mathrm{CH}_{3} \times 2$), 1.82-2.07 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{3}$), $3.76(3 \mathrm{H}$ $\left.\mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.81\left(1 \mathrm{H}\right.$, ddd, $J 13,7.5$ and $\left.6.5, \mathrm{CHCH}_{2} \mathrm{CH}_{3}\right), 4.11-$ $4.26\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3} \times 2\right)$ (Found: $\mathrm{M}^{+}, 270.0691 . \mathrm{C}_{9} \mathrm{H}_{19}{ }^{-}$ $\mathrm{O}_{5} \mathrm{SP}$ requires $\mathrm{M}, 270.0689$).

(2EIZ)-2-Ethyl-5,5-dimethoxy-3-methylpent-2-enol 27 and 28

BuLi ($1.68 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in hexane; $35.7 \mathrm{~cm}^{3}, 0.06 \mathrm{~mol}$) was added to diisopropylamine ($8.41 \mathrm{~cm}^{3}, 0.06 \mathrm{~mol}$) at $0^{\circ} \mathrm{C}$ and the mixture was diluted with dry THF $\left(25 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. To this LDA solution was added dropwise a solution of the butanoate 26 $(12.96 \mathrm{~g}, 0.048 \mathrm{~mol})$ in dry THF $\left(30 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$, and the solution was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . A solution of the ketone $24(5.28 \mathrm{~g}, 0.04 \mathrm{~mol})$ in dry THF ($15 \mathrm{~cm}^{3}$) was added to the reaction mixture at $-78^{\circ} \mathrm{C}$, and the solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and at room temperature for 30 min . After being quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed with brine, dried and evaporated to give a residue which was purified by $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}-\right.$ hexane, 1:4) to afford the conjugated ester 25 ($3.83 \mathrm{~g}, 43 \%$). Subsequently, a solution of $\mathbf{2 5}(3.36 \mathrm{~g}, 15 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}$ (15 cm^{3}) was added dropwise to a stirred suspension of LiAlH_{4} $(0.68 \mathrm{~g}, 18 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}\left(30 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 20 min . The excess of LiAlH_{4} was decomposed by the dropwise addition of water. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extracts were washed with brine. Evaporation of the dried extracts gave a residue which was purified by short CC (acetone-hexane, 1:9) to afford the

E-alcohol $27(1.26 \mathrm{~g}, 45 \%)$ and the Z-alcohol $\mathbf{2 8}(1.04 \mathrm{~g}, 37 \%)$ as colourless oils, respectively.

E-Alcohol 27. $v_{\text {max }} / \mathrm{cm}^{-1} 3611$ and $3465(\mathrm{OH}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$; $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) 1.00\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.71\left[3 \mathrm{H}, \mathrm{s},=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right]$, $2.21\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.43\left[2 \mathrm{H}, \mathrm{d}, J 5.5,=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right]$, $3.14(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe} \times 2), 3.99\left(2 \mathrm{H}\right.$, br s-like, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 4.43[1 \mathrm{H}, \mathrm{t}$, $J 5.5, \mathrm{CH}(\mathrm{OMe})_{2}$] (Found: $\mathrm{M}^{+}, 188.1400 . \mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{3}$ requires M, 188.1413).
Z-Alcohol 28. $v_{\text {max }} / \mathrm{cm}^{-1} 3455(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right)$ $0.99\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.58\left[3 \mathrm{H}, \mathrm{s},=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right], 2.18$ $\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.39\left[2 \mathrm{H}, \mathrm{d}, J 5.5,=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right]$, $3.02(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe} \times 2), 4.10\left[2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right], 4.24[1 \mathrm{H}, \mathrm{t}$, $\left.J 5.5, \mathrm{CH}(\mathrm{OMe})_{2}\right]$ (Found: $\mathrm{M}^{+}, 188.1408 . \mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{3}$ requires M, 188.1413).

(3Z)-4-Chloromethyl-1,1-dimethoxy-3-methylhex-3-ene 30

$\mathrm{MsCl}\left(0.62 \mathrm{~cm}^{3}, 8.0 \mathrm{mmol}\right)$ was added to a solution of the Z-alcohol $28(1.00 \mathrm{~g}, 5.3 \mathrm{mmol})$ in dry $\operatorname{Py}\left(3 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . The mixture was poured into ice-water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed with diluted aq. oxalic acid, saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue which was purified by short CC (acetone-hexane, $6: 94$) to afford the Z-chloride $30(681 \mathrm{mg}, 62 \%)$ as an oil; $\delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.86\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.59\left[3 \mathrm{H}, \mathrm{s},=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\right.$ $\left.\mathrm{CH}_{2}\right], 2.10\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.41\left[2 \mathrm{H}, \mathrm{d}, J 5.5,=\mathrm{C}\left(\mathrm{CH}_{3}\right)-\right.$ $\left.\mathrm{CH}_{2}\right], 3.09(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe} \times 2), 4.04\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Cl}\right), 4.37[1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 5.5, $\mathrm{CH}(\mathrm{OMe})_{2}$] [Found: $(\mathrm{M}-\mathrm{OMe})^{+}$, 175.0883. $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}^{35} \mathrm{Cl}$ requires $\mathrm{M}-\mathrm{OMe}, 175.0889$] [Found: $(\mathrm{M}-\mathrm{OMe})^{+}, 177.0872$. $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}^{37} \mathrm{Cl}$ requires $\left.\mathrm{M}-\mathrm{OMe}, 177.0859\right]$.

(3Z)-1,1-Dimethoxy-3,4-dimethylhex-3-ene 29

$\mathrm{Py} \cdot \mathrm{SO}_{3}(1.80 \mathrm{~g}, 11.3 \mathrm{mmol})$ was added to a solution of the E alcohol $27(1.06 \mathrm{~g}, 5.64 \mathrm{mmol})$ in THF $\left(15 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 2.5 h . After dry THF $\left(25 \mathrm{~cm}^{3}\right)$ was added to the reaction solution, $\mathrm{LiAlH}_{4}(0.86 \mathrm{~g}, 22.6 \mathrm{mmol})$ was added to this solution at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 4 h . The excess of LiAlH_{4} was decomposed by the dropwise addition of water. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extracts were washed with aq. $5 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue which was purified by short CC ($\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:9) to afford the Z-reduction product 29 (340 $\mathrm{mg}, 35 \%)$ as a colourless oil; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.95(3 \mathrm{H}, \mathrm{t}$, $\left.J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.65$ and 1.68 [each $3 \mathrm{H}, \mathrm{s},=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \times 2$], $2.07\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.36\left(2 \mathrm{H}, \mathrm{d}, J 5.5, \mathrm{CHCH}_{2}\right), 3.33$ $(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe} \times 2), 4.39\left[1 \mathrm{H}, \mathrm{t}, J 5.5, \mathrm{C} H(\mathrm{OMe})_{2}\right]$ (Found: M^{+}, 172.1466. $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{M}, 172.1464$).

(3E)-3,4-Dimethylhex-3-enal 32

To a solution of the Z-chloride $\mathbf{3 0}(681 \mathrm{mg}, 3.3 \mathrm{mmol})$ in dry THF ($30 \mathrm{~cm}^{3}$) was added $\mathrm{LiAlH}_{4}(250 \mathrm{mg}, 6.6 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was refluxed for 1 h . After cooling, the excess of LiAlH_{4} was decomposed by wet silica gel, and the reaction mixture was filtered through Celite. Evaporation of the filtrates gave the crude products which, without purification, were dissolved in THF ($8 \mathrm{~cm}^{3}$) and a solution of PTSA (60 mg) in THF $\left(3 \mathrm{~cm}^{3}\right)$ was added to it. After being stirred at room temperature for 5 h , the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave the E-aldehyde $32(113 \mathrm{mg}, 27 \%)$ as a colourless oil; $v_{\text {max }} / \mathrm{cm}^{-1} 1718(\mathrm{CHO}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.83(3 \mathrm{H}, \mathrm{t}$, $\left.J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.41$ and 1.47 [each 3 H , br s, $=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \times 2$], $1.89\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.67\left(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J 2.5, \mathrm{CH}_{2} \mathrm{CHO}\right)$, $9.24(1 \mathrm{H}, \mathrm{t}, J 2.5, \mathrm{CHO})$.

(3Z)-3,4-Dimethylhex-3-enal 31

A solution of PTSA (90 mg) in THF ($5 \mathrm{~cm}^{3}$) was added to a solution of the Z-reduction product 29 ($340 \mathrm{mg}, 2.0 \mathrm{mmol}$) in

THF $\left(1 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at room temperature for 5 h . The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave the Z-aldehyde $31(79.7 \mathrm{mg}, 32 \%)$ as a colourless oil; $v_{\text {max }} / \mathrm{cm}^{-1} 1719(\mathrm{CHO}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.79(3 \mathrm{H}, \mathrm{t}$, $\left.J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.46$ and 1.49 [each 3 H , br s, $=\mathrm{C}\left(\mathrm{CH}_{3}\right)$ $\mathrm{CH}_{2} \times 2$], $1.79\left(2 \mathrm{H}, \mathrm{qd}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.70(2 \mathrm{H}$, dd-like, $J 2.5$ and $\left.1, \mathrm{CH}_{2} \mathrm{CHO}\right), 9.27(1 \mathrm{H}, \mathrm{t}, J 2.5, \mathrm{CHO})$.

(6E)-4-Acetoxy-6,7-dimethylnon-6-en-2-one 10'

BuLi ($1.68 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in hexane; $0.62 \mathrm{~cm}^{3}, 1.04 \mathrm{mmol}$) was added to diisopropylamine $\left(0.15 \mathrm{~cm}^{3}, 1.04 \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$. To this LDA solution was added acetone ($0.07 \mathrm{~cm}^{3}, 0.96 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ and the solution was stirred at $-78^{\circ} \mathrm{C}$ for 20 min . To the reaction solution was added the E-aldehyde 32 (101 mg , 0.8 mmol) at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . After being quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with AcOEt. The extracts were washed with brine, dried and evaporated to give an oil which was dissolved in dry $\mathrm{Py}\left(2 \mathrm{~cm}^{3}\right) . \mathrm{Ac}_{2} \mathrm{O}\left(1 \mathrm{~cm}^{3}\right)$ was added to this solution and the reaction mixture was stirred at room temperature for 2 h , poured into ice-water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed with aq. $5 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue, which was purified by short $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, 1:1) to afford the E-acetate $\mathbf{1 0}^{\prime}(37 \mathrm{mg}, 21 \%)$ as a colourless oil. Spectral properties of this acetate were in good agreement with those of the tetrasubstituted olefinic methyl ketone $\mathbf{1 0}$ in the rearrangement; $v_{\text {max }} / \mathrm{cm}^{-1} 1733(\mathrm{OAc}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.92$ $\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.67$ and 1.68 [each $3 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \times 2\right], 1.98(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 1.94-2.09(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.15\left[3 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right], 2.18(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and 6$)$ and $2.42(1 \mathrm{H}$, dd, $J 13.5$ and 7.5$)\left[\mathrm{CH}(\mathrm{OAc}) \mathrm{CH}_{2} \mathrm{C}(\mathrm{Me})=\right], 2.59$ $\left(1 \mathrm{H}, \mathrm{dd}, J 16\right.$ and 5) and $2.70(1 \mathrm{H}, \mathrm{dd}, J 16$ and 8$)\left[\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right]$, $5.40(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOAc})$ (Found: M^{+}, 226.1591. $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $\mathrm{M}, 226.1570$).

(6Z)-4-Acetoxy-6,7-dimethylnon-6-en-2-one 33

In the same manner as described for the synthesis of the E acetate $\mathbf{1 0}^{\prime}$ from the E-aldehyde 32, the Z-aldehyde $\mathbf{3 1}(75 \mathrm{mg}$, $0.6 \mathrm{mmol})$ was reacted with acetone followed by acetylation to give the Z-acetate 33 ($61 \mathrm{mg}, 45 \%$) as a colourless oil; $v_{\text {max }} / \mathrm{cm}^{-1}$ $1733(\mathrm{OAc}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.95\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.62$ and 1.67 [each $3 \mathrm{H}, \mathrm{br} \mathrm{s},=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \times 2$], $1.98(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.02-$ $2.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.21(1 \mathrm{H}, \mathrm{dd}$, $J 14$ and 6.5$)$ and $2.42(1 \mathrm{H}$, dd, $J 14$ and 7.5$)[\mathrm{CH}(\mathrm{OAc})-$ $\left.\mathrm{CH}_{2} \mathrm{C}(\mathrm{Me})=\right], 2.60(1 \mathrm{H}, \mathrm{dd}, J 16$ and 4.5$)$ and $2.70(1 \mathrm{H}, \mathrm{dd}, J$ 16 and 8$)\left[\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right], 5.37(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOAc})$ (Found: M^{+}, 226.1579. $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $\mathrm{M}, 226.1570$).

(E)-4-[(4R)-4-tert-Butyldimethylsilyloxy-2,6,6-trimethylcyclo-hex-1-enyl]but-3-en-2-one 35

$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(489 \mathrm{mg}, 0.70 \mathrm{mmol})$ was added to a solution of the enol triflate $3^{8}(9.35 \mathrm{~g}, 23 \mathrm{mmol})$, methyl vinyl ketone (9.4 $\left.\mathrm{cm}^{3}, 116 \mathrm{mmol}\right)$ and $\mathrm{Et}_{3} \mathrm{~N}\left(11.4 \mathrm{~cm}^{3}, 81 \mathrm{mmol}\right)$ in dry DMF (65 cm^{3}). The mixture was heated and stirred at $85^{\circ} \mathrm{C}$ for 20 h . After cooling, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with aq. $5 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried solution gave a residue which was purified by $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, 1:3) to afford the 3-silyloxy- β ionone $35(6.03 \mathrm{~g}, 81 \%)$ as a pale yellow oil; $[a]_{\mathrm{D}}^{21}-45.6$ (c 1.14, $\mathrm{MeOH}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 216,291 ; v_{\max } / \mathrm{cm}^{-1} 1666$ (conj. C=O), $1604(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.08(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times 2), 0.90(9 \mathrm{H}, \mathrm{s}$, SiBu^{t}), 1.09 and 1.11 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), $1.50(1 \mathrm{H}, \mathrm{t}, J 12$, $\left.2-\mathrm{H}_{\mathrm{ax}}\right), 1.68\left(1 \mathrm{H}, \mathrm{ddd}, J 12,4\right.$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 1.76(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me})$, $2.10\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $J 18$ and $\left.9,4-\mathrm{H}_{\mathrm{ax}}\right), 2.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.30$ $\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $J 18$ and $\left.6,4-\mathrm{H}_{\mathrm{eq}}\right), 3.95(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 6.11(1 \mathrm{H}, \mathrm{d}$, $J 16,8-\mathrm{H}), 7.22(1 \mathrm{H}$, br d, $J 16,7-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 322.2314$. $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}$ requires M, 322.2330).
tert-Butyldimethylsilyl ($1 R$)-4-hydroxymethyl-3,5,5-trimethyl-cyclohex-3-enyl ether 37
Ozone gas was introduced into a stirred solution of $35(6.00 \mathrm{~g}$, $18.6 \mathrm{mmol})$ in $\mathrm{MeOH}\left(50 \mathrm{~cm}^{3}\right)$ at $-20^{\circ} \mathrm{C}$ until the spot for compound 35 disappeared on TLC. Nitrogen gas was bubbled into the reaction solution for 10 min to remove the excess ozone gas. Aq. $\mathrm{AcOH}\left(15 \mathrm{~cm}^{3}\right)$ and Zn powder (2.5 g) were added to the solution at $-20^{\circ} \mathrm{C}$ and then the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was filtered off, then the filtrate was concentrated to give a residue which was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave 36 as an oil which, without purification, was dissolved in $\mathrm{MeOH}\left(50 \mathrm{~cm}^{3}\right)$. $\mathrm{NaBH}_{4}(496 \mathrm{mg}, 13 \mathrm{mmol})$ was added to this solution at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . This mixture was poured into ice-water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with aq. $5 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue which was purified by $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.1: 1\right)$ to afford the alcohol $37(4.19 \mathrm{~g}, 79 \%$ from 35$)$ as a colourless oil; $[a]_{\mathrm{D}}^{28}-49.0(c \quad 1.00, \mathrm{MeOH}) ; v_{\max } / \mathrm{cm}^{-1} 3615$ and $3480(\mathrm{OH})$; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.07(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times 2), 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}{ }^{t}\right), 1.05$ and 1.10 (each 3 H , s, gem-Me), $1.47\left(1 \mathrm{H}, \mathrm{t}, J 12,12-\mathrm{H}_{\mathrm{ax}}\right), 1.64$ $\left(1 \mathrm{H}\right.$, ddd, $J 12,4$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 1.76(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.04(1 \mathrm{H}, \mathrm{br}$ dd, $J 17$ and $9,4-\mathrm{H}_{\mathrm{ax}}$, $2.19\left(1 \mathrm{H}\right.$, br dd, $J 17$ and $\left.5.5,4-\mathrm{H}_{\mathrm{eq}}\right), 3.92$ ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), 4.08 and 4.17 (each $1 \mathrm{H}, \mathrm{d}, J 12,7-\mathrm{H}_{2}$) (Found: M^{+}, 284.2169. $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2}$ Si requires $\mathrm{M}, 284.2173$).

tert-Butyldimethylsilyl ($1 R$)-3,4,5,5-tetramethylcyclohex-3-enyl ether 38

$\mathrm{Py} \cdot \mathrm{SO}_{3}(5.60 \mathrm{~g}, 35.0 \mathrm{mmol})$ was added to a solution of the alcohol $37(5.00 \mathrm{~g}, 17.6 \mathrm{mmol})$ in THF $\left(50 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $5^{\circ} \mathrm{C}$ for 45 h . After dry THF $\left(50 \mathrm{~cm}^{3}\right)$ was added to the reaction solution, $\mathrm{LiAlH}_{4}(4.01 \mathrm{~g}, 105 \mathrm{mmol})$ was added to this solution at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at room temperature for 4 h . The excess of LiAlH_{4} was decomposed by the dropwise addition of water. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extracts were washed with aq. $5 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue which was purified by short $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, 3:97) to afford the silyl ether 38 ($4.43 \mathrm{~g}, 94 \%$) as a colourless oil; $[a]_{\mathrm{D}}^{28}-55.4$ (c 1.01, $\mathrm{MeOH}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.07(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times 2), 0.90(9 \mathrm{H}, \mathrm{s}$, SiBu^{t}), 0.99 and 1.01 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), $1.44(1 \mathrm{H}, \mathrm{t}, J 12$, $2-\mathrm{H}_{\mathrm{ax}}$), 1.54 and 1.58 (each 3 H , br s, $5-\mathrm{Me}$ and $6-\mathrm{Me}$), $1.62(1 \mathrm{H}$, ddd, $J 12,3.5$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 1.99-2.20\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 3.90$ ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$) (Found: M^{+}, 268.2204. $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{OSi}$ requires M , 268.2224).

($1 R$)-3,4,5,5-Tetramethylcyclohex-3-enyl acetate 39

Aq. $47 \% \mathrm{HF}\left(15 \mathrm{~cm}^{3}\right)$ was added to a solution of the silyl ether $38(4.34 \mathrm{~g}, 16.5 \mathrm{mmol})$ in THF $\left(50 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temperature for 10 min and then neutralized with saturated aq. NaHCO_{3}. The organics were extracted with AcOEt and washed with saturated aq. NaHCO_{3} and brine. Evaporation of the dried solution gave the alcohol, which without purification was dissolved in dry $\mathrm{Py}\left(30 \mathrm{~cm}^{3}\right)$. $\mathrm{Ac}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ was added to this solution and the reaction mixture was stirred at room temperature for 16 h , poured into ice-water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed with aq. 5% HCl , saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue which was purified by short CC ($\mathrm{Et}_{2} \mathrm{O}$-hexane, 5:95) to afford the acetate $39(2.85 \mathrm{~g}, 88 \%)$ as a colourless oil; $[a]_{\mathrm{D}}^{23}-61.4(c 0.88, \mathrm{EtOH}) ; v_{\text {max }} / \mathrm{cm}^{-1} 1719$ (OAc); $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.03$ and 1.06 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), $1.53(1 \mathrm{H}, \mathrm{t}, J$ $12,2-\mathrm{H}_{\mathrm{ax}}$), 1.57 and 1.59 (each $3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$ and $6-\mathrm{Me}$), 1.74 $\left(1 \mathrm{H}, \mathrm{ddd}, J 12,4\right.$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 2.02\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{ax}}\right), 2.03(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OAc}), 2.31\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $J 16.5$ and $\left.6,4-\mathrm{H}_{\mathrm{eq}}\right), 5.01(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ [Found: $(\mathrm{M}-\mathrm{AcOH})^{+}$, 136.1230. $\mathrm{C}_{10} \mathrm{H}_{16}$ requires $\mathrm{M}-\mathrm{AcOH}$, 136.1253].

Epoxidation of acetate 39

In the same manner as described for MCPBA oxidation of 22, the acetate $39(1.94 \mathrm{~g}, 9.9 \mathrm{mmol})$ was treated with MCPBA to give oxidation products which were purified by short $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}-\right.$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane, $1: 3: 6$) to afford the anti-epoxide $4 \mathrm{a}(0.49 \mathrm{~g}$, $23 \%)$ and the syn-epoxide $\mathbf{4 b}(1.06 \mathrm{~g}, 51 \%)$ as colourless oils, respectively.
anti-Epoxide 4a. $[\alpha]_{\mathrm{D}}^{20}-27.5(c 1.02, \mathrm{EtOH}) ; v_{\max } / \mathrm{cm}^{-1} 1730$ $(\mathrm{OAc}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.07$ and 1.08 (each 3 H , s, gem-Me), 1.26 and 1.33 (each $3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$ and $6-\mathrm{Me}), 1.29(1 \mathrm{H}, \mathrm{dd}, J 13$ and 9 , $\left.2-\mathrm{H}_{\mathrm{ax}}\right), 1.61\left(1 \mathrm{H}\right.$, ddd, $J 13,3$ and $\left.1,2-\mathrm{H}_{\mathrm{eq}}\right), 1.72(1 \mathrm{H}, \mathrm{dd}, J 15$ and $\left.7,4-\mathrm{H}_{\mathrm{ax}}\right), 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.35(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J 15$ and 6 , $4-\mathrm{H}_{\mathrm{eq}}$), $4.87(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 212.1439 . \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{3}$ requires $\mathrm{M}, 212.1413$).
syn-Epoxide 4b. $[\alpha]_{\mathrm{D}}^{20}-22.7$ (c 1.10, EtOH); $v_{\max } / \mathrm{cm}^{-1} 1729$, 1713 (split) (OAc); $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.08$ and 1.10 (each 3 H , s, gem$\mathrm{Me}), 1.23$ and 1.30 (each $3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$ and $6-\mathrm{Me}$), $1.27(1 \mathrm{H}$, ddd, $J 12,4$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 1.62\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.83(1 \mathrm{H}, \mathrm{dd}, J 15$ and $\left.10,4-\mathrm{H}_{\mathrm{ax}}\right), 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.25(1 \mathrm{H}$, ddd, $J 15,8$ and $\left.2,4-\mathrm{H}_{\mathrm{eq}}\right), 4.84(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{H})$ [Found: $(\mathrm{M}-\mathrm{AcOH})^{+}, 152.1225$. $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$ requires $\left.\mathrm{M}-\mathrm{AcOH}, 152.1202\right]$.

Rearrangement of the anti-epoxides 4 a

To a solution of $\mathbf{4 a}(212 \mathrm{mg}, 1.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added dropwise $47 \% \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(906 \mathrm{mg}, 3 \mathrm{mmol})$ at $-25^{\circ} \mathrm{C}$ and the mixture was stirred at $-25^{\circ} \mathrm{C}$ for 4 h and at $0^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic layer was washed with saturated aq. NaHCO_{3} and brine. Evaporation of the dried solution gave a residue which was purified by short $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.3: 17\right)$ to afford a mixture of the anti-cyclopentyl methyl ketone 7 and tetrasubstituted olefinic methyl ketone $9(134 \mathrm{mg}, 63 \% ; 7: 9=c a .1: 1)$ as colourless oils. Spectral properties of the anti-cyclopentyl methyl ketone 7 were in agreement with those reported. ${ }^{12}$
anti-Cyclopentyl methyl ketone $7 . \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.88,1.15$ and 1.28 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 3), 1.53\left(1 \mathrm{H}\right.$, dd, $J 15$ and $\left.3,4-\mathrm{H}_{\beta}\right), 1.72$ $\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $J 14.5$ and $\left.4.5,2-\mathrm{H}_{\beta}\right), 2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.08(1 \mathrm{H}$, dd, $J 14$ and $\left.8,2-\mathrm{H}_{\alpha}\right), 2.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.86(1 \mathrm{H}, \mathrm{dd}, J 15$ and $\left.9,4-\mathrm{H}_{\alpha}\right), 5.14(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{H})$.

Tetrasubstituted olefinic methyl ketone 9. $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.64$ $(3 \mathrm{H}, \mathrm{s})$ and $1.68(6 \mathrm{H}, \mathrm{s})(=\mathrm{CMe} \times 3), 1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.15$ $\left[3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right.$], $2.23(1 \mathrm{H}$, br dd, $J 13.5$ and 6.5$)$ and $2.42(1 \mathrm{H}$, br dd, $J 13.5$ and 7$)\left(2-\mathrm{H}_{2}\right), 2.59(1 \mathrm{H}$, dd, $J 16.5$ and 5) and $2.70(1 \mathrm{H}$, dd, $J 16.5$ and 8$)\left(4-\mathrm{H}_{2}\right), 5.37(1 \mathrm{H}, \mathrm{m}$, 3-H).

Rearrangement of the syn-epoxide 4b

In the same manner as described above, $\mathbf{4 b}(212 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ was treated with $47 \% \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(906 \mathrm{mg}, 3.0 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ for 4 h and at $-25^{\circ} \mathrm{C}$ for 1 h to provide the syncyclopentyl methyl ketone $\mathbf{1 2}(134 \mathrm{mg}, 63 \%)$ as a colourless oil. Spectral properties of the syn-cyclopentyl methyl ketone 12 were in agreement with those reported; ${ }^{12} \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.99$, 1.11 and $1.15($ each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 3), 1.64(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $\left.3.5,2-\mathrm{H}_{\beta}\right), 2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.04(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and 8.5, $\left.4-\mathrm{H}_{\alpha}\right), 2.14\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.9,2-\mathrm{H}_{\alpha}\right), 2.16(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{CO}\right), 2.55\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.6,4-\mathrm{H}_{\beta}\right), 5.14(1 \mathrm{H}, \mathrm{m}$, $3 \mathrm{H})$.

(E)-Methyl 3-[(4R)-acetoxy-2,6,6-trimethylcyclohex-1-enyl]-prop-2-enoate 43

A solution of TBAF ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in THF; $3 \mathrm{~cm}^{3}, 3 \mathrm{mmol}$) was added to a solution of $\mathbf{4 2}^{8}(1.7 \mathrm{~g}, 5.0 \mathrm{mmol})$ in dry THF (20 cm^{3}) and the mixture was stirred at room temperature for 2 h and at $80^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was diluted with AcOEt and washed with brine. Evaporation of the dried solvent gave a residue which was purified by short CC (acetonehexane, $1: 9$) to afford the hydroxy compound. This was dissolved in dry $\mathrm{Py}\left(10 \mathrm{~cm}^{3}\right)$ and $\mathrm{Ac}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$ was added to it. The reaction mixture was stirred at room temperature for 16 h ,
poured into ice-water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed with aq. $5 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue which was purified by short $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.1: 4\right)$ to afford 43 (0.81 $\mathrm{g}, 71 \%$ from 42) as a colourless oil; $v_{\max } / \mathrm{cm}^{-1} 1718$ (OAc and $\left.\mathrm{CO}_{2} \mathrm{Me}\right) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.10$ and 1.14 (each 3 H , s, gem-Me), $1.59\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.76(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.79(1 \mathrm{H}, \mathrm{ddd}, J 12$, 3.5 and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.14(1 \mathrm{H}, \mathrm{br}$ dd, $J 17.5$ and $\left.9.5,4-\mathrm{H}_{\mathrm{ax}}\right), 2.49\left(1 \mathrm{H}\right.$, br dd, $J 17.5$ and $\left.6,4-\mathrm{H}_{\mathrm{eq}}\right), 3.77(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 5.04(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.83(1 \mathrm{H}, \mathrm{d}, J 16,8-\mathrm{H}), 7.36(1 \mathrm{H}$, d, $J 16,7-\mathrm{H}$) (Found: $\mathrm{M}^{+}, 266.1519 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4}$ requires M , 266.1519).

(1R)-3,5,5-Trimethyl-4-phenylcyclohex-3-enyl acetate 45

Phenyllithium ($1.8 \mathrm{~mol} \mathrm{dm}^{-3}$ in cyclohexane- $\mathrm{Et}_{2} \mathrm{O} ; 7: 3 ; 3.33$ $\left.\mathrm{cm}^{3}, 6 \mathrm{mmol}\right)$ was added to a solution of $15(1.14 \mathrm{~g}, 5 \mathrm{mmol})$ in dry THF $\left(20 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$. The reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed with brine, dried and evaporated to give a residue, which was dissolved with $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$. PTSA (10 mg) was added to this solution and the mixture was stirred at room temperature for 1 h . After evaporation off of the MeOH , the residue was extracted with AcOEt. The extracts were washed with saturated aq. NaHCO_{3} and brine, dried and evaporated to give the diol, which was dissolved in dry $\operatorname{Py}\left(7 \mathrm{~cm}^{3}\right) . \mathrm{Ac}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$ was added to this solution and the reaction mixture was stirred at room temperature for 16 h , poured into ice-water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed with aq. $5 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue which was purified by short $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.1: 4\right)$ to afford the acetoxy compound (quant.). The acetoxy compound (1.15 g, $4.17 \mathrm{mmol})$ was dissolved in dry Py $\left(15 \mathrm{~cm}^{3}\right)$. Phosphorus oxychloride ($2.33 \mathrm{~cm}^{3}$) was added slowly to the stirred reaction mixture and the mixture was stirred at $75^{\circ} \mathrm{C}$ for 16 h . After cooling, the reaction mixture was cautiously poured into icewater and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed with aq. $5 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue which was purified by short CC $\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.1: 4\right)$ to afford $45(0.86 \mathrm{~g}, 80 \%$ from 15$)$; $v_{\text {max }} / \mathrm{cm}^{-1} 1725(\mathrm{OAc}), 1600(\mathrm{Ph}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.89,1.10$ and $1.30($ each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 3), 1.71\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.86(1 \mathrm{H}$, ddd, $J 12,4$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.16(1 \mathrm{H}$, dddlike, $J 16.5,9.5$ and $\left.1,4-\mathrm{H}_{\mathrm{ax}}\right), 2.48(1 \mathrm{H}$, ddd, $J 16.5,6$ and 1.5, $\left.4-\mathrm{H}_{\mathrm{eq}}\right), 5.19(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 6.98(2 \mathrm{H}, \mathrm{m})$ and $7.28(3 \mathrm{H}, \mathrm{m})(\mathrm{Ar}-$ H) [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 259.1672. $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{2}$ requires $\mathrm{M}+\mathrm{H}$, 259.1699].

(1R)-3,5,5-Trimethyl-4-acetoxymethylcyclohex-3-enyl acetate 47

Aq. $47 \% \mathrm{HF}\left(7 \mathrm{~cm}^{3}\right)$ was added to a solution of the silyl alcohol $37(1.1 \mathrm{~g}, 3.87 \mathrm{mmol})$ in THF $\left(20 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temperature for 1 h and neutralized with saturated aq. NaHCO_{3}. The organics were extracted with AcOEt and washed with saturated aq. NaHCO_{3} and brine. Evaporation of the dried solution gave the diol, which without purification was dissolved in dry $\mathrm{Py}\left(10 \mathrm{~cm}^{3}\right) . \mathrm{Ac}_{2} \mathrm{O}\left(4 \mathrm{~cm}^{3}\right)$ was added to the reaction and the mixture was stirred at room temperature for 16 h , poured into ice-water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed with aq. $5 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue, which was purified by short $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.15: 85\right)$ to afford the diacetate $47(0.41 \mathrm{~g}, 42 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}^{27}-50.0$ (c $1.02, \mathrm{MeOH}) ; v_{\max } / \mathrm{cm}^{-1} 1726(\mathrm{OAc}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.06$ and $1.08\left(\right.$ each $3 \mathrm{H}, \mathrm{s}$, gem-Me), $1.59\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.70(3 \mathrm{H}, \mathrm{s}$, $5-\mathrm{Me}), 1.76\left(1 \mathrm{H}\right.$, ddd, $J 12,4$ and $2,2-\mathrm{H}_{\text {eq }}$), 2.04 and 2.05 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc} \times 2), 2.11\left(1 \mathrm{H}\right.$, ddd, $J 17,9$ and $\left.1,4-\mathrm{H}_{\mathrm{ax}}\right), 2.43(1 \mathrm{H}$, ddd, $J 17,6$ and $\left.1,4-\mathrm{H}_{\mathrm{eq}}\right), 4.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OAc}\right), 5.04(1 \mathrm{H}, \mathrm{m}$, 3-H).
tert-Butyldimethylsilyl (1R)-4-tert-butyldimethylsilyloxymethyl-3,5,5-trimethylcyclohex-3-enyl ether 49
TBSCl $(0.79 \mathrm{~g}, 5.25 \mathrm{mmol})$ was added to a stirred solution of the alcohol $37(1.42 \mathrm{~g}, 5 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}\left(0.76 \mathrm{~cm}^{3}, 5.5 \mathrm{mmol}\right)$ and DMAP ($0.61 \mathrm{~g}, 5 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right)$ at room temperature. The mixture was stirred at room temperature for 3 h , poured into ice-water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed successively with aq. $5 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue which was purified by short $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.1: 9\right)$ to afford $49(1.56 \mathrm{~g}, 78 \%)$ as a colourless oil; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.07$ $\left(12 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2} \times 2\right), 0.90\left(18 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t} \times 2\right), 1.04$ and 1.06 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), $1.45-1.70\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 1.68(3 \mathrm{H}, \mathrm{s}$, $5-\mathrm{Me}), 1.95-2.25\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 3.93(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.09(2 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, 7-\mathrm{H}_{2}$).

(1R)-4-(2-Acetoxyethyl)-3,5,5-trimethylcyclohex-3-enyl acetate 51

$\mathrm{Ac}_{2} \mathrm{O}\left(1 \mathrm{~cm}^{3}\right)$ was added to a solution of $\mathbf{2 0}(96 \mathrm{mg}, 0.42 \mathrm{mmol})$ in dry Py $\left(1 \mathrm{~cm}^{3}\right)$ and the reaction mixture was stirred at room temperature for 1 h , poured into ice-water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed with aq. $5 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue, which was purified by short CC (acetonehexane, 1:4) to afford $51(114 \mathrm{mg}$, quantitatively) as a colourless oil; $v_{\text {max }} / \mathrm{cm}^{-1} 1728(\mathrm{OAc}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.08(6 \mathrm{H}, \mathrm{s}$, gem$\mathrm{Me}), 1.53\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.68(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.74(1 \mathrm{H}$, ddd, $J 12,3.5$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 2.03(1 \mathrm{H}, \mathrm{br}$ dd, $J 16$ and $10,4-$ H_{ax}), 2.03 and 2.05 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc} \times 2$), 2.26-2.47 ($3 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}_{\text {eq }}$ and $\left.7-\mathrm{H}_{2}\right), 4.01\left(2 \mathrm{H}, \mathrm{t}, J 8.5,8-\mathrm{H}_{2}\right), 4.99(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 269.1736. $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{4}$ requires $\mathrm{M}+\mathrm{H}$, 269.1754].

3-[(4R)-4-Acetoxy-2,6,6-trimethylcyclohex-1-enyl]propionitrile

 53$\mathrm{MsCl}\left(0.23 \mathrm{~cm}^{3}, 3.0 \mathrm{mmol}\right)$ was added to a solution of 20 (337 $\mathrm{mg}, 1.5 \mathrm{mmol})$ in dry $\operatorname{Py}\left(3 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 2 h , poured into ice-water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed with aq. 5% HCl , saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue, which was purified by short CC ($\mathrm{Et}_{2} \mathrm{O}$-hexane, 2:3) to afford the mesylate (quantitatively). $\mathrm{KCN}(3.24 \mathrm{~g}, 50 \mathrm{mmol})$ was added to a solution of the mesylate ($3.79 \mathrm{~g}, 12.5 \mathrm{mmol}$) and 18 -crown-6 ($330 \mathrm{mg}, 1.25 \mathrm{mmol}$) in dry DMSO ($30 \mathrm{~cm}^{3}$) at room temperature and the mixture was stirred vigorously and warmed at $80^{\circ} \mathrm{C}$ for 16 h . Then the mixture was poured into ice-water carefully and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed with brine. Evaporation of the dried extracts gave a residue, which was purified by short CC ($\mathrm{Et}_{2} \mathrm{O}$-hexane, 3:7) to afford $53(2.34 \mathrm{~g}, 80 \%)$ as a colourless oil; $v_{\text {max }} / \mathrm{cm}^{-1} 2247(\mathrm{CN}), 1731(\mathrm{OAc}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.08(6 \mathrm{H}, \mathrm{s}$, gem-Me), $1.54\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.67(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.74(1 \mathrm{H}$, ddd, $J 12,3.5$ and $2,2-\mathrm{H}_{\mathrm{eq}}$, $2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.05(1 \mathrm{H}, \mathrm{br} \mathrm{dd}$, $J 16.5$ and $\left.9,4-\mathrm{H}_{\mathrm{ax}}\right), 2.30-2.53\left(5 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{eq}}, 7-\mathrm{H}_{2}\right.$ and $\left.8-\mathrm{H}_{2}\right)$, $4.98(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 236.1628. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N}$ requires $\mathrm{M}+\mathrm{H}$, 236.1652].

(1R)-4-(3-Acetoxypropyl)-3,5,5-trimethylcyclohex-3-enyl acetate 54

A solution of DIBAL-H ($2.44 \mathrm{~cm}^{3}, 13.7 \mathrm{mmol}$) in dry hexane (5 cm^{3}) was added to a solution of $\mathbf{5 3}(805 \mathrm{mg}, 3.43 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The excess DIBAL-H was destroyed by an addition of moist silica gel $\left(\mathrm{SiO}_{2}-\mathrm{H}_{2} \mathrm{O}, 5: 1\right)$ and the mixture was filtered through Celite. Evaporation of the dried filtrate gave a residue, which was dissolved in $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right) . \mathrm{NaBH}_{4}(127 \mathrm{mg}, 3.34 \mathrm{mmol})$ was added to the solution at $0^{\circ} \mathrm{C}$ and this was stirred at $0^{\circ} \mathrm{C}$ for 30 min . After evaporation of MeOH , the residue was purified by short CC (acetone-hexane, 1:4) to afford the diol and then this compound was dissolved in dry Py $\left(10 \mathrm{~cm}^{3}\right)$. $\mathrm{Ac}_{2} \mathrm{O}(5$
cm^{3}) was added to the reaction mixture at room temperature and the mixture was stirred at room temperature for 16 h , poured into ice-water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracts were washed with aq. $5 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine. Evaporation of the dried extracts gave a residue, which was purified by short $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, $\left.1: 4\right)$ to afford 54 (448 $\mathrm{mg}, 46 \%)$ as a colourless oil; $v_{\text {max }} / \mathrm{cm}^{-1} 1728(\mathrm{OAc}) ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz}) 1.05$ and 1.06 (each 3 H , s, gem-Me), $1.53(1 \mathrm{H}, \mathrm{t}, J 12$, $\left.2-\mathrm{H}_{\mathrm{ax}}\right), 1.61(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.62-1.76\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{eq}}\right.$ and $\left.8-\mathrm{H}_{2}\right)$, 1.94-2.14 $\left(3 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{ax}}\right.$ and $\left.7-\mathrm{H}_{2}\right), 2.03$ and 2.06 (each 3 H , $\mathrm{s}, \mathrm{OAc} \times 2), 2.31\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $J 17$ and $\left.6,4-\mathrm{H}_{\mathrm{eq}}\right), 4.06(2 \mathrm{H}, \mathrm{t}$, $\left.J 6.5,9-\mathrm{H}_{2}\right), 5.00(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ [Found: $(\mathrm{M}+\mathrm{H})^{+}, 283.1914$. $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{4}$ requires $\mathrm{M}+\mathrm{H}, 283.1911$].

Epoxidation of compounds 40, 43, 45, 47, 49, 51 and 54

In the same manner as described for MCPBA oxidation of 22, the compounds $\mathbf{4 0},{ }^{10} \mathbf{4 3}, \mathbf{4 5}, 47,49,51$ and 54 were treated with MCPBA to give oxidation products. Reaction conditions, purification methods and yields of products are listed in Table 3.
anti-Epoxide 41a. $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 230 ; v_{\text {max }} / \mathrm{cm}^{-1} 1730(\mathrm{OAc})$, 1677 (conj. $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.94$ and 1.05 (each 3 H , s, gem$\mathrm{Me}), 1.20(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.38\left(1 \mathrm{H}, \mathrm{dd}, J 13\right.$ and $\left.11,2-\mathrm{H}_{\text {ax }}\right), 1.55$ $\left(1 \mathrm{H}\right.$, ddd, $J 13,3.5$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 1.82(3 \mathrm{H}, \mathrm{d}, J 1.5,9-\mathrm{Me}), 1.86$ $\left(1 \mathrm{H}, \mathrm{dd}, J 14\right.$ and $\left.9,4-\mathrm{H}_{\mathrm{ax}}\right), 2.02$ and 2.13 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc} \times 2$), $2.37\left(1 \mathrm{H}\right.$, br dd, $J 14$ and $\left.5,4-\mathrm{H}_{\text {eq }}\right), 2.58,3.62$ (each $1 \mathrm{H}, \mathrm{d}$, $\left.J 18.5,7-\mathrm{H}_{2}\right), 4.82\left(2 \mathrm{H}, \mathrm{d}, J 6,11-\mathrm{H}_{2}\right), 4.86(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, $6.58(1 \mathrm{H}$, td-like, $J 6$ and $1.5,10-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 352.1895$. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{6}$ requires $\mathrm{M}, 352.1884$).
syn-Epoxide 41b. $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 234 ; v_{\max } / \mathrm{cm}^{-1} 1730(\mathrm{OAc})$, 1680 (conj. C=O); $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.97$ and 1.05 (each 3 H , s, gem$\mathrm{Me}), 1.17(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.30\left(1 \mathrm{H}\right.$, ddd, $J 12.5,4$ and $2,2-\mathrm{H}_{\text {eq }}$), $1.55\left(1 \mathrm{H}, \mathrm{t}, J 12.5,2-\mathrm{H}_{\mathrm{ax}}\right), 1.82(3 \mathrm{H}, \mathrm{d}, J 1,9-\mathrm{Me}), 1.82(1 \mathrm{H}, \mathrm{dd}$, $J 14.5$ and $10,4-\mathrm{H}_{\mathrm{ax}}$), 2.00 and 2.12 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc} \times 2$), 2.34 (1 H, ddd, $J 14.5,8.5$ and $2,4-\mathrm{H}_{\mathrm{eq}}$), 2.70 and 3.47 (each $1 \mathrm{H}, \mathrm{d}$, $\left.J 18.5,7-\mathrm{H}_{2}\right), 4.81\left(2 \mathrm{H}, \mathrm{d}, J 6,11-\mathrm{H}_{2}\right), 4.97(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 6.56$ (1 H , td-like, $J 6$ and 1, 10-H) (Found: $\mathrm{M}^{+}, 352.1880 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{6}$ requires $\mathrm{M}, 352.1884$).
anti-Epoxide 44a. $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 218 ; v_{\text {max }} / \mathrm{cm}^{-1} 1722(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.99,1.20$ and 1.21 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 3$), 1.38 $\left(1 \mathrm{H}, \mathrm{dd}, J 13.5\right.$ and $\left.8,2-\mathrm{H}_{\mathrm{ax}}\right), 1.67(1 \mathrm{H}$, ddd, $J 13.5,3.5$ and 1 , $\left.2-\mathrm{H}_{\mathrm{eq}}\right), 1.79\left(1 \mathrm{H}, \mathrm{dd}, J 15\right.$ and $\left.5,4-\mathrm{H}_{\mathrm{ax}}\right), 2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.41$ $\left(1 \mathrm{H}\right.$, br dd, $J 15$ and $\left.5,4-\mathrm{H}_{\text {eq }}\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.73(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}), 6.05(1 \mathrm{H}, \mathrm{d}, J 15.5,8-\mathrm{H}), 7.20(1 \mathrm{H}, \mathrm{d}, J 15.5,7-\mathrm{H})$ [Found: $(\mathrm{M}+\mathrm{H})^{+}, \quad 283.1560 . \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{5}$ requires $\mathrm{M}+\mathrm{H}$, 283.1546].
syn-Epoxide 44b. $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 219 ; v_{\max } / \mathrm{cm}^{-1} 1723(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.99,1.18$ and 1.26 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 3$), 1.36 $\left(1 \mathrm{H}\right.$, ddd, $J 12.5,4.5$ and $\left.1.5,2-\mathrm{H}_{\mathrm{eq}}\right), 1.66\left(1 \mathrm{H}, \mathrm{t}, J 12.5,2-\mathrm{H}_{\mathrm{ax}}\right)$, $1.87\left(1 \mathrm{H}, \mathrm{dd}, J 15\right.$ and $\left.11,4-\mathrm{H}_{\mathrm{ax}}\right), 2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.35$ $\left(1 \mathrm{H}\right.$, ddd, $J 15,7.5$ and $\left.1,4-\mathrm{H}_{\text {eq }}\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.91$ $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 6.03(1 \mathrm{H}, \mathrm{d}, J 15.5,8-\mathrm{H}), 7.13(1 \mathrm{H}, \mathrm{d}, J 15.5$, 7-H) [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 283.1534. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{5}$ requires $\mathrm{M}+\mathrm{H}$, 283.1546].
anti-Epoxide 46a. $v_{\text {max }} / \mathrm{cm}^{-1} 1729(\mathrm{OAc}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.94$, 0.99 and 1.05 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 3$), 1.48 (1 H , dd, $J 13.5$ and 8, $\left.2-\mathrm{H}_{\mathrm{ax}}\right), 1.77\left(1 \mathrm{H}\right.$, ddd, $J 13.5,3.5$ and $\left.1,2-\mathrm{H}_{\mathrm{eq}}\right), 1.90(1 \mathrm{H}, \mathrm{dd}$, $J 15$ and $\left.6.5,4-\mathrm{H}_{\mathrm{ax}}\right), 2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.46(1 \mathrm{H}$, ddd, $J 15,6$ and $1,4-\mathrm{H}_{\text {eq }}$), $5.03(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 7.13-7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ (Found: $\mathrm{M}^{+}, 274.1584 . \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $\mathrm{M}, 274.1570$).
syn-Epoxide 46b. $v_{\text {max }} / \mathrm{cm}^{-1} 1728(\mathrm{OAc}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.94$, 0.96 and 1.12 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 3$), $1.40(1 \mathrm{H}$, ddd, $J 12,4$ and $\left.1.5,2-\mathrm{H}_{\mathrm{eq}}\right), 1.82\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.94(1 \mathrm{H}, \mathrm{dd}, J 15$ and 9.5 , $\left.4-\mathrm{H}_{\mathrm{ax}}\right), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.40(1 \mathrm{H}$, ddd, $J 15,7.5$ and 1.5 , $4-\mathrm{H}_{\text {eq }}$), $5.03(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 7.07-7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ (Found: M^{+}, 274.1595. $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $\mathrm{M}, 274.1570$).
anti-Epoxide 48a. $[a]_{\mathrm{D}}^{27}-21.4(c 1.03, \mathrm{MeOH}) ; v_{\max } / \mathrm{cm}^{-1} 1734$ $(\mathrm{OAc}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.13$ and 1.15 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), 1.32 $\left(1 \mathrm{H}, \mathrm{dd}, J 13\right.$ and $\left.10.5,2-\mathrm{H}_{\mathrm{ax}}\right), 1.39(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.59(1 \mathrm{H}$, ddd, $J 13,3.5$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 1.77\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.8,4-\mathrm{H}_{\mathrm{ax}}\right)$,
2.01 and 2.09 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc} \times 2$), $2.39(1 \mathrm{H}$, ddd, $J 14.5,5.5$ and $1.5,4-\mathrm{H}_{\text {eq }}$), 4.03 and 4.41 (each $1 \mathrm{H}, \mathrm{d}, J 12,7-\mathrm{H}_{2}$), 4.85 $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 271.1549. $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{5}$ requires ($\mathrm{M}+\mathrm{H}$), 271.1546].
syn-Epoxide 48b. $[a]_{\mathrm{D}}^{27}-18.6$ ((1.18, MeOH); $v_{\text {max }} / \mathrm{cm}^{-1} 1733$ $(\mathrm{OAc}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}), 1.11$ and 1.14 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), 1.29 $\left(1 \mathrm{H}, \mathrm{ddd}, J 12.5,4\right.$ and $\left.2,2-\mathrm{H}_{\text {eq }}\right), 1.36(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.59(1 \mathrm{H}, \mathrm{t}$, $\left.J 12.5,2-\mathrm{H}_{\mathrm{ax}}\right), 1.82\left(1 \mathrm{H}, \mathrm{dd}, J 15\right.$ and $\left.9.5,4-\mathrm{H}_{\mathrm{ax}}\right), 2.02$ and 2.07 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc} \times 2$), $2.29\left(1 \mathrm{H}\right.$, ddd, $J 15,7$ and $1.5,4-\mathrm{H}_{\mathrm{eq}}$), 3.95 and 4.52 (each $\left.1 \mathrm{H}, \mathrm{d}, J 12.5,7-\mathrm{H}_{2}\right), 4.87(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 271.1544. $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{5}$ requires $(\mathrm{M}+\mathrm{H})$, 271.1546].
anti-Epoxide 50a. $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.03\left(12 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2} \times 2\right), 0.87$ and 0.89 (each $9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t} \times 2$), 1.05 and 1.20 (each $3 \mathrm{H}, \mathrm{s}$, gemMe), $1.22\left(1 \mathrm{H}, \mathrm{dd}, J 12.5\right.$ and $\left.11,2-\mathrm{H}_{\mathrm{ax}}\right), 1.35(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me})$, $1.39\left(1 \mathrm{H}\right.$, ddd, $J 12.5,3.5$ and $\left.2,2-\mathrm{H}_{\text {eq }}\right), 1.61(1 \mathrm{H}, \mathrm{dd}, J 14$ and $\left.9,4-\mathrm{H}_{\mathrm{ax}}\right), 2.18\left(1 \mathrm{H}\right.$, ddd, $J 14,5$ and $\left.2,4-\mathrm{H}_{\mathrm{eq}}\right), 3.55$ and 3.88 (each $\left.1 \mathrm{H}, \mathrm{d}, J 11,7-\mathrm{H}_{2}\right), 3.75(1 \mathrm{H}$, dddd, $J 11,9,5$ and $3.5,3-\mathrm{H}$) [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 415.3086. $\mathrm{C}_{22} \mathrm{H}_{47} \mathrm{O}_{3} \mathrm{Si}_{2}$ requires $(\mathrm{M}+\mathrm{H})$, 415.3066].
syn-Epoxide 50b. $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.04\left(12 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2} \times 2\right), 0.87$ and 0.89 (each $9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t} \times 2$), 1.05 and 1.14 (each 3 H , s, gem-Me), $1.12\left(1 \mathrm{H}\right.$, ddd, $J 12,3.5$ and $\left.2,2-\mathrm{H}_{\text {eq }}\right), 1.35(3 \mathrm{H}, \mathrm{s}, 5-$ $\mathrm{Me}), 1.46\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.80(1 \mathrm{H}, \mathrm{dd}, J 15$ and $9.5,4-$ $\left.\mathrm{H}_{\mathrm{ax}}\right), 2.00\left(1 \mathrm{H}\right.$, ddd, $J 15,7$ and $\left.2,4-\mathrm{H}_{\mathrm{eq}}\right), 3.41$ and 4.04 (each $\left.1 \mathrm{H}, \mathrm{d}, J 11,7-\mathrm{H}_{2}\right), 3.79(1 \mathrm{H}$, dddd, $J 12,9.5,7$ and $3.5,3-\mathrm{H})$ [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 415.3051. $\mathrm{C}_{22} \mathrm{H}_{47} \mathrm{O}_{3} \mathrm{Si}_{2}$ requires $\mathrm{M}+\mathrm{H}$ 415.3066].
anti-Epoxide 52a. $v_{\text {max }} / \mathrm{cm}^{-1} 1732(\mathrm{OAc}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.07$ and 1.16 (each 3 H , s, gem-Me), $1.32\left(1 \mathrm{H}, \mathrm{dd}, J 14\right.$ and $\left.6,2-\mathrm{H}_{\mathrm{ax}}\right)$, $1.35(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.62\left(1 \mathrm{H}\right.$, ddd, $J 13.5,3.5$ and $\left.2,2-\mathrm{H}_{\mathrm{eq}}\right), 1.77$ $\left(1 \mathrm{H}, \mathrm{dd}, J 15\right.$ and $\left.6,4-\mathrm{H}_{\mathrm{ax}}\right), 1.92-2.14\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 2.00$ and 2.05 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc} \times 2$), $2.36(1 \mathrm{H}, \mathrm{br}$ dd, $J 15$ and 7.5 , $\left.4-\mathrm{H}_{\mathrm{eq}}\right), 4.15\left(2 \mathrm{H}, \mathrm{t}, J 7.5,8-\mathrm{H}_{2}\right), 4.86(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 285.1687. $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{5}$ requires $\left.\mathrm{M}+\mathrm{H}, 285.1703\right]$.
syn-Epoxide 52b. $v_{\text {max }} / \mathrm{cm}^{-1} 1732(\mathrm{OAc}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.09$ and 1.12 (each 3 H , s, gem-Me), $1.27(1 \mathrm{H}$, ddd, $J 12,4$ and 1.5 , $\left.2-\mathrm{H}_{\mathrm{eq}}\right), 1.30(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.62\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.82(1 \mathrm{H}$, dd, $J 15$ and $\left.9.5,4-\mathrm{H}_{\mathrm{ax}}\right), 1.99\left(2 \mathrm{H}, \mathrm{q}, J 7,7-\mathrm{H}_{2}\right), 2.00$ and 2.04 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc} \times 2$), $2.27\left(1 \mathrm{H}, \mathrm{ddd}, J 15,7.5\right.$ and $1.5,4-\mathrm{H}_{\mathrm{eq}}$), 4.07 and 4.09 (each 1 H, dd, $J 7$ and $\left.2,8-\mathrm{H}_{2}\right), 4.83(1 \mathrm{H}, \mathrm{m}$, 3-H) [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 285.1704. $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{5}$ requires $\mathrm{M}+\mathrm{H}$, 285.1703].
anti-Epoxide 55a. $v_{\text {max }} / \mathrm{cm}^{-1} 1731(\mathrm{OAc}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.07$ and 1.16 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), $1.30(1 \mathrm{H}$, dd, $J 13.5$ and 7.5 , $\left.2-\mathrm{H}_{\mathrm{ax}}\right), 1.57(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.60(1 \mathrm{H}$, ddd, $J 13.5,3.5$ and 1.5 , $\left.2-\mathrm{H}_{\mathrm{eq}}\right), 1.75\left(1 \mathrm{H}\right.$, dd, $J 15$ and $\left.6.5,4-\mathrm{H}_{\mathrm{ax}}\right), 1.66-1.86(4 \mathrm{H}$, $\mathrm{m}, 7-\mathrm{H}_{2}$ and $8-\mathrm{H}_{2}$), 2.00 and 2.04 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc} \times 2$), 2.35 $\left(1 \mathrm{H}\right.$, ddd, $J 15,6$ and $\left.1,4-\mathrm{H}_{\text {eq }}\right), 4.03(2 \mathrm{H}$, td-like, $J 6$ and 2.5 , 9$\left.\mathrm{H}_{2}\right), 4.86(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 299.1854. $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{5}$ requires $\mathrm{M}+\mathrm{H}$, 299.1860].
syn-Epoxide 55b. $v_{\max } / \mathrm{cm}^{-1} 1731(\mathrm{OAc}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.06$ and 1.13 (each 3 H , s, gem-Me), 1.20-1.30 ($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\text {eq }}$), 1.27 $(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.63\left(1 \mathrm{H}, \mathrm{t}, J 12,2-\mathrm{H}_{\mathrm{ax}}\right), 1.58-1.72\left(4 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ and $\left.8-\mathrm{H}_{2}\right), 1.81\left(1 \mathrm{H}, \mathrm{dd}, J 15\right.$ and $\left.9.5,4-\mathrm{H}_{\mathrm{ax}}\right), 2.00$ and 2.05 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc} \times 2$), $2.26\left(1 \mathrm{H}\right.$, ddd, $J 15,7.5$ and $1,4-\mathrm{H}_{\mathrm{eq}}$), $4.04\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{2}\right), 4.83(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 299.1864. $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{5}$ requires $\mathrm{M}+\mathrm{H}, 299.1860$].

Preparation of epoxides 58a and 58b

According to the procedure described for the epoxidation of 22, compound $\mathbf{2 0}$ was treated with MCPBA to give the crude oxidation products, which were purified by short CC (acetonehexane, $1: 4$) to afford the epoxy alcohols $56(1.57 \mathrm{~g}, 97 \%)$ as colourless oils. A solution of a part of the epoxy alcohol (860 $\mathrm{mg}, 3.6 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(28 \mathrm{~cm}^{3}\right)$ was added to a solution of NMO ($620 \mathrm{mg}, 5.3 \mathrm{mmol}$) and molecular sieves $4 \AA$ $(1.78 \mathrm{~g})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(34 \mathrm{~cm}^{3}\right)$ at room temperature and the mixture was stirred at room temperature for 10 min . Then TPAP ($62 \mathrm{mg}, 0.18 \mathrm{mmol}$) was added to the reaction and the
mixture was stirred at room temperature for 2 h . The mixture was filtered through Celite and the filtrate was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$, brine and aq. CuSO_{4}. Evaporation of the dried extracts gave a residue, which was purified by short CC (acetone-hexane, 1:4) to afford $57(0.77 \mathrm{~g}$, 90%) as colourless oils. $\mathrm{BuLi}\left(1.63 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in hexane; 2.17 $\mathrm{cm}^{3}, 1.33 \mathrm{mmol}$) was added to a solution of methyltriphenylphosphonium bromide ($1.38 \mathrm{~g}, 3.86 \mathrm{mmol}$) in dry THF $\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . A solution of $57(0.77 \mathrm{~g}, 3.21 \mathrm{mmol})$ in dry THF $\left(10 \mathrm{~cm}^{3}\right)$ was added to the reaction mixture at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extracts were washed with brine. Evaporation of the dried extracts gave a residue, which was purified by short $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-hexane, 1:9) and then low pressure column chromatography ($\mathrm{Et}_{2} \mathrm{O}$-hexane, $3: 17$) to afford 58a ($107 \mathrm{mg}, 14 \%$) and $\mathbf{5 8 b}$ ($267 \mathrm{mg}, 35 \%$) as colourless oils, respectively.
anti-Epoxide 58a. $v_{\text {max }} / \mathrm{cm}^{-1} 1729(\mathrm{OAc}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.08$ and 1.14 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), $1.29(1 \mathrm{H}$, dd, $J 13.5$ and 9 , $\left.2-\mathrm{H}_{\mathrm{ax}}\right), 1.36(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.58(1 \mathrm{H}$, ddd, $J 13.5,3.5$ and 1.5 , $\left.2-\mathrm{H}_{\mathrm{eq}}\right), 1.75\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.7.5,4-\mathrm{H}_{\mathrm{ax}}\right), 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$, $2.31(1 \mathrm{H}, \mathrm{ddt}, J 16,6$ and $2,7-\mathrm{H}), 2.36(1 \mathrm{H}$, ddd, $J 14,6.5$ and 1 , $\left.4-\mathrm{H}_{\mathrm{eq}}\right), 2.67(1 \mathrm{H}, \mathrm{br}$ dd, $J 16$ and $6.5,7-\mathrm{H}), 4.87(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, $5.03(1 \mathrm{H}, \mathrm{m})$ and $5.10(1 \mathrm{H}, \mathrm{m})\left(9-\mathrm{H}_{2}\right), 5.86(1 \mathrm{H}, \mathrm{ddt}, J 17.5,10$ and 6.5, 8-H) [Found: $(\mathrm{M}+\mathrm{H})^{+}, 239.1646 . \mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{3}$ requires $\mathrm{M}+\mathrm{H}, 239.1648]$.
syn-Epoxide 58b. $v_{\text {max }} / \mathrm{cm}^{-1} 1730(\mathrm{OAc}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.09$ and 1.13 (each $3 \mathrm{H}, \mathrm{s}$, gem-Me), $1.23(1 \mathrm{H}$, ddd, $J 12,4$ and 1.5 , $\left.2-\mathrm{H}_{\mathrm{eq}}\right), 1.32(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.62\left(1 \mathrm{H}, \mathrm{t}, J 12.5,2-\mathrm{H}_{\mathrm{ax}}\right), 1.82(1 \mathrm{H}$, dd, $J 15$ and $\left.9.5,4-\mathrm{H}_{\mathrm{ax}}\right), 2.00(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.26(1 \mathrm{H}$, ddd, $J 14.5,7.5$ and $\left.1.5,4-\mathrm{H}_{\mathrm{eq}}\right), 2.34(1 \mathrm{H}$, ddt, $J 16,6$ and 2$)$ and 2.64 $(1 \mathrm{H}$, br dd, $J 16$ and 7.5$)\left(7-\mathrm{H}_{2}\right), 4.84(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.00(1 \mathrm{H}$, $\mathrm{t}, J 1.5)$ and $5.07(1 \mathrm{H}, \mathrm{dt}, J 4.5$ and 1.5$)\left(9-\mathrm{H}_{2}\right), 5.78(1 \mathrm{H}, \mathrm{m}$, 8-H) [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 239.1625. $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{3}$ requires $\mathrm{M}+\mathrm{H}$, 239.1648].

Rearrangement of other epoxides

General procedure. In the same manner as described for the rearrangement of the anti-epoxide 4 a , epoxides $41,44,46,48$, $\mathbf{5 0}, \mathbf{5 2}, \mathbf{5 5}$ and $\mathbf{5 8}$ were treated with $47 \% \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (3 equiv.) to provide each product. Reaction conditions, purification methods and yields of products are listed in Table 4.
Compound 60. $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 219 ; v_{\text {max }} / \mathrm{cm}^{-1} 1723$ (OAc and $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.87,1.18$ and 1.33 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 3$), $1.58\left(1 \mathrm{H}, \mathrm{dd}, J 15\right.$ and $\left.3,4-\mathrm{H}_{\beta}\right), 1.76(1 \mathrm{H}, \mathrm{br}$ dd, $J 14.5$ and 4.5 , $\left.2-\mathrm{H}_{\beta}\right), 2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.06\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.8,2-\mathrm{H}_{a}\right)$, $2.92\left(1 \mathrm{H}, \mathrm{dd}, J 15\right.$ and $\left.8.5,4-\mathrm{H}_{a}\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 5.23$ $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 6.71(1 \mathrm{H}, \mathrm{d}, J 15.5,8-\mathrm{H}), 7.40(1 \mathrm{H}, \mathrm{d}, J 15.5$, 7-H) [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 283.1559. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{5}$ requires $\mathrm{M}+\mathrm{H}$, 283.1546].

Compound 61. $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 223 ; v_{\text {max }} / \mathrm{cm}^{-1} 1727(\mathrm{OAc})$, 1688 (conj. $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}(300 \mathrm{MHz}$) 0.96, 1.13 and 1.21 (each $3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me} \times 3), 1.67\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.3.5,2-\mathrm{H}_{\beta}\right), 2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$, $2.09\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.8.5,4-\mathrm{H}_{a}\right), 2.17(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $\left.8.5,2-\mathrm{H}_{a}\right), 2.60\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.6,4-\mathrm{H}_{3}\right), 5.18(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, $6.73(1 \mathrm{H}, \mathrm{d}, J 15.5,8-\mathrm{H}), 7.45(1 \mathrm{H}, \mathrm{d}, J 15.5,7-\mathrm{H})$ [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 283.1553. $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{5}$ requires $\left.\mathrm{M}+\mathrm{H}, 283.1546\right]$.

Compound 62. $v_{\text {max }} / \mathrm{cm}^{-1} 1732(\mathrm{OAc}$ and $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz})$ $0.87,1.15$ and 1.28 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 3$), $1.54(1 \mathrm{H}, \mathrm{dd}, J 15$ and $\left.3,4-\mathrm{H}_{\beta}\right), 1.73\left(1 \mathrm{H}\right.$, br dd, $J 14$ and $\left.5,2-\mathrm{H}_{\beta}\right), 2.01$ and 2.02 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc} \times 2$), $2.08\left(1 \mathrm{H}, \mathrm{dd}, J 14\right.$ and $\left.8,2-\mathrm{H}_{\alpha}\right), 2.77$ (each 1 H , td, $J 6$ and 1, $7-\mathrm{H}_{2}$), $2.87\left(1 \mathrm{H}\right.$, dd, $J 15$ and $\left.8.5,4-\mathrm{H}_{\alpha}\right), 4.31$ and 4.35 (each $1 \mathrm{H}, \mathrm{dt}, J 11.5$ and $\left.6.5,8-\mathrm{H}_{2}\right), 5.21(1 \mathrm{H}, \mathrm{m}$, 3-H) [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 285.1683. $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{5}$ requires $\mathrm{M}+\mathrm{H}$, 285.1703].

Compound 63. $v_{\text {max }} / \mathrm{cm}^{-1} 1733$ (OAc and $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}(500 \mathrm{MHz})$ $0.98,1.11$ and 1.15 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 3), 1.66(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $\left.3.5,2-\mathrm{H}_{\beta}\right), 2.02$ and 2.04 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc} \times 2$), $2.05(1 \mathrm{H}$, dd, $J 14.5$ and $\left.8.5,4-\mathrm{H}_{a}\right), 2.14\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.8.5,2-\mathrm{H}_{a}\right)$,
$2.55\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.6,4-\mathrm{H}_{\beta}\right), 2.75$ and 2.83 (each 1 H , dt, $J 18$ and $6.5,7-\mathrm{H}_{2}$), 4.33 and 4.37 (each $1 \mathrm{H}, \mathrm{dt}, J 11.5$ and $\left.6.5,8-\mathrm{H}_{2}\right), 5.15(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ [Found: $(\mathrm{M}+\mathrm{H})^{+}, 285.1701$. $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{5}$ requires $\mathrm{M}+\mathrm{H}$, 285.1703].

Compound 64. $v_{\text {max }} / \mathrm{cm}^{-1} 1728(\mathrm{OAc}), 1698(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(200$ $\mathrm{MHz}) 0.84,1.15$ and 1.27 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 3$), $1.55(1 \mathrm{H}, \mathrm{dd}$, $J 14.5$ and $\left.3,4-\mathrm{H}_{\beta}\right), 1.72\left(1 \mathrm{H}\right.$, dd, $J 14.5$ and $\left.4.5,2-\mathrm{H}_{\beta}\right), 1.82-$ $1.96\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right), 2.02$ and 2.04 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc} \times 2$), 2.07 $\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $8,2-\mathrm{H}_{\alpha}$), 2.52 (each 1 H , td, $J 7$ and 2.5 , $\left.7-\mathrm{H}_{2}\right), 2.86\left(1 \mathrm{H}, \mathrm{dd}, J 14.5\right.$ and $\left.9,4-\mathrm{H}_{a}\right), 4.07(2 \mathrm{H}, \mathrm{t}, J 6.5$, $\left.9-\mathrm{H}_{2}\right), 5.21(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ [Found: $(\mathrm{M}+\mathrm{H})^{+}, 299.1842$. $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{5}$ requires $\mathrm{M}+\mathrm{H}$, 299.1860].

Compound 65. $v_{\max } / \mathrm{cm}^{-1} 1730(\mathrm{OAc}$ and $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz})$ $0.95,1.11$ and 1.15 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 3$), $1.65(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $\left.3.5,2-\mathrm{H}_{\beta}\right), 1.90\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right), 2.04$ and 2.05 (each $3 \mathrm{H}, \mathrm{s}$, $\mathrm{OAc} \times 2), 2.07\left(1 \mathrm{H}, \mathrm{dd}, J 14\right.$ and $\left.8.5,4-\mathrm{H}_{a}\right), 2.13(1 \mathrm{H}$, dd, $J 14.5$ and $\left.8.5,2-\mathrm{H}_{\alpha}\right), 2.55\left(1 \mathrm{H}\right.$, dd, $J 14$ and $\left.7,4-\mathrm{H}_{\beta}\right), 2.41-2.65(2 \mathrm{H}$, $\left.\mathrm{m}, 7-\mathrm{H}_{2}\right), 4.07\left(2 \mathrm{H}, \mathrm{t}, J 6.5,9-\mathrm{H}_{2}\right), 5.15(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{H})$ [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 299.1852. $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{5}$ requires $(\mathrm{M}+\mathrm{H})$, 299.1860].

Compound 73. $v_{\max } / \mathrm{cm}^{-1} 1732(\mathrm{OAc}$ and $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(200 \mathrm{MHz})$ $1.69(6 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}$ and $7-\mathrm{Me}$), 1.98 and 2.05 (each 3 H , s, $\mathrm{OAc} \times 2), 1.98-2.18\left(4 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right.$ and $\left.9-\mathrm{H}_{2}\right), 2.16[3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$], $2.20(1 \mathrm{H}$, dd, $J 13.5$ and 5.5$)$ and $2.43(1 \mathrm{H}, \mathrm{dd}$, $J 13.5$ and 7.5$)\left(5-\mathrm{H}_{2}\right), 2.58(1 \mathrm{H}, \mathrm{dd}, J 16.5$ and 5$)$ and $2.72(1 \mathrm{H}$, dd, $J 16.5$ and 7.5$)\left(3-\mathrm{H}_{2}\right), 4.02\left(2 \mathrm{H}, \mathrm{t}, J 6.5,10-\mathrm{H}_{2}\right), 5.39$ $(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$ [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 299.1862. $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{5}$ requires $\mathrm{M}+\mathrm{H}, 299.1860]$.

Compound 75. $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 220 ; v_{\max } / \mathrm{cm}^{-1} 1729$ (OAc), 1669 (conj. $\mathrm{C}=\mathrm{O}$); $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.65(6 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}$ and $7-\mathrm{Me})$, $1.65-1.77\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{2}\right), 2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.13\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right)$, $2.25\left[3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right], 2.93\left(1 \mathrm{H}, \mathrm{dd}, J 6.5\right.$ and $\left.1.5,5-\mathrm{H}_{2}\right)$, $4.04\left(2 \mathrm{H}, \mathrm{t}, J 6.5,10-\mathrm{H}_{2}\right), 6.03(1 \mathrm{H}, \mathrm{dt}, J 16$ and $1.5,3-\mathrm{H}), 6.72$ $(1 \mathrm{H}, \mathrm{dt}, J 16$ and $6.5,4-\mathrm{H})$ [Found: $(\mathrm{M}+\mathrm{H})^{+}, 239.1634$ $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{3}$ requires $\mathrm{M}+\mathrm{H}, 239.1648$].

Compound 66. $v_{\text {max }} / \mathrm{cm}^{-1} 1725(\mathrm{OAc}), 1697(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz}) 0.87,1.15$ and 1.29 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 3), 1.55(1 \mathrm{H}$, dd, $J 15$ and $\left.3.5,4-\mathrm{H}_{\beta}\right), 1.71\left(1 \mathrm{H}\right.$, dd, $J 14.5$ and $\left.4.5,2-\mathrm{H}_{\beta}\right), 2.02$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.07\left(1 \mathrm{H}, \mathrm{dd}, J 14\right.$ and $\left.8,2-\mathrm{H}_{a}\right), 2.87(1 \mathrm{H}, \mathrm{dd}, J 15$ and $\left.9,4-\mathrm{H}_{a}\right), 3.23\left(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right), 5.07(1 \mathrm{H}, \mathrm{dq}, J 17$ and 1.5$)$ and $5.16(1 \mathrm{H}, \mathrm{dq}, J 10$ and 1.5$)\left(9-\mathrm{H}_{2}\right), 5.21(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.92$ $(1 \mathrm{H}$, ddt, $J 17,10$ and $6.5,8-\mathrm{H})$ [Found: $(\mathrm{M}+\mathrm{H})^{+}, 239.1636$. $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{3}$ requires $\mathrm{M}+\mathrm{H}, 239.1648$].

Compound 67. $v_{\text {max }} / \mathrm{cm}^{-1} 1725(\mathrm{OAc}), 1699(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz}) 0.98,1.11$ and 1.16 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 3$), $1.65(1 \mathrm{H}$, dd $J 14.5$ and $\left.3.5,2-\mathrm{H}_{\mathrm{\beta}}\right), 2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.06(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and $\left.8.5,4-\mathrm{H}_{\alpha}\right), 2.12\left(1 \mathrm{H}\right.$, dd, $J 14.5$ and $\left.8.5,2-\mathrm{H}_{a}\right), 2.55(1 \mathrm{H}$, dd, $J 14.5$ and $6,4-\mathrm{H}_{\beta}$), 3.21 and 3.29 (each 1 H , ddt, $J 17,6.5$ and $\left.1,7-\mathrm{H}_{2}\right), 5.09(1 \mathrm{H}, \mathrm{dq}, J 17$ and 1$)$ and $5.06(1 \mathrm{H}, \mathrm{dq}, J 10.5$ and 1$)\left(9-\mathrm{H}_{2}\right), 5.17(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.94(1 \mathrm{H}, \mathrm{ddt}, J 17,10.5$ and 6.5, 8-H) [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 239.1636. $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{3}$ requires $\mathrm{M}+\mathrm{H}, 239.1648]$.

Compound 74. $v_{\max } / \mathrm{cm}^{-1} 1732(\mathrm{OAc}$ and $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz})$ 1.67 and 1.70 (each $3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}$ and $7-\mathrm{Me}$), 1.98 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$), $2.15\left[3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right], 2.22(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and 6$)$ and 2.46 $(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and 8$)\left(5-\mathrm{H}_{2}\right), 2.60(1 \mathrm{H}$, dd, $J 16.5$ and 5$)$ and $2.72(1 \mathrm{H}, \mathrm{dd}, J 16.5$ and 8$)\left(3-\mathrm{H}_{2}\right), 2.71$ and 2.80 (each 1 H , br dd, $J 15$ and $\left.6.5,8-\mathrm{H}_{2}\right), 4.97(1 \mathrm{H}, \mathrm{dq}, J 11$ and 1.5$)$ and 4.98 $(1 \mathrm{H}, \mathrm{dq}, J 16$ and 1.5$)\left(10-\mathrm{H}_{2}\right), 5.40(1 \mathrm{H}$, tdd, $J 8,6$ and $5,4-\mathrm{H})$, $5.70(1 \mathrm{H}$, ddt, $J 16,11$ and $6.5,9-\mathrm{H})$ [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 239.1639. $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{3}$ requires $\mathrm{M}+\mathrm{H}, 239.1648$].

Compound 68. $v_{\text {max }} / \mathrm{cm}^{-1} 3608$ and $3487(\mathrm{OH}), 1729(\mathrm{OAc})$; $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.06,1.22$ and 1.33 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 3$), 1.48 $\left(1 \mathrm{H}\right.$, ddd, $J 12.5,4.5$ and $\left.2.5,2-\mathrm{H}_{\mathrm{eq}}\right), 1.76\left(1 \mathrm{H}, \mathrm{t}, J 12.5,2-\mathrm{H}_{\mathrm{ax}}\right)$, $1.79\left(1 \mathrm{H}\right.$, ddd, $J 13,4.5$ and $\left.2.5,4-\mathrm{H}_{\text {eq }}\right), 1.91(1 \mathrm{H}, \mathrm{dd}, J 13$ and $\left.11.5,4-\mathrm{H}_{\mathrm{ax}}\right), 2.02$ and 2.11 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc} \times 2$), $2.39(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH}), 4.37$ and 4.49 (each $\left.1 \mathrm{H}, \mathrm{d}, J 12,7-\mathrm{H}_{2}\right), 5.14(1 \mathrm{H}, \mathrm{tt}, J 12$ and 4.5, 3-H) [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 289.1673. $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{O}_{6}$ requires $\mathrm{M}+\mathrm{H}, 289.1652]$.

Compound 69. $v_{\text {max }} / \mathrm{cm}^{-1} 3588(\mathrm{OH}), 1737(\mathrm{OAc}) ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz}) 1.05,1.22$ and $1.27($ each $3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \times 3), 1.64(1 \mathrm{H}$, ddd,
$J 15,3.5$ and $\left.2.5,2-\mathrm{H}_{\text {eq }}\right), 1.75\left(1 \mathrm{H}, \mathrm{dt}, J 15\right.$ and $\left.3,4-\mathrm{H}_{\mathrm{eq}}\right), 1.90$ $\left(1 \mathrm{H}, \mathrm{dd}, J 15\right.$ and $\left.3.5,2-\mathrm{H}_{\mathrm{ax}}\right), 2.06$ and 2.12 (each $3 \mathrm{H}, \mathrm{s}$, $\mathrm{OAc} \times 2), 2.19\left(1 \mathrm{H}, \mathrm{dd}, J 15\right.$ and $\left.4,4-\mathrm{H}_{\mathrm{ax}}\right), 2.55$ and 2.88 (each $1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.47$ and 4.59 (each $\left.1 \mathrm{H}, \mathrm{d}, J 12,7-\mathrm{H}_{2}\right), 5.18(1 \mathrm{H}$, quint., J 3.5, 3-H) [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 289.1635. $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{O}_{6}$ requires $\mathrm{M}+\mathrm{H}$, 289.1652].

Compound 71. $v_{\text {max }} / \mathrm{cm}^{-1} 1713(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.01(6 \mathrm{H}$, $\mathrm{s}, \mathrm{SiMe} \times 2$), 0.08 and 0.09 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe} \times 2$), 0.87 and 0.91 (each $9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}$), $0.84,1.14$ and 1.26 (each $3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me} \times 3)$, $1.48\left(1 \mathrm{H}, \mathrm{dd}, J 14\right.$ and $\left.3,4-\mathrm{H}_{\beta}\right), 1.63(1 \mathrm{H}, \mathrm{dd}, J 13.5$ and $\left.4.5,2-\mathrm{H}_{\beta}\right), 1.93\left(1 \mathrm{H}, \mathrm{dd}, J 13.5\right.$ and $\left.7.5,2-\mathrm{H}_{a}\right), 2.66(1 \mathrm{H}$, dd, $J 14$ and $8,4-\mathrm{H}_{a}$), 4.36 and 4.43 (each $1 \mathrm{H}, \mathrm{d}, J 18,7-\mathrm{H}_{2}$), $4.39(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ [Found: $(\mathrm{M}+\mathrm{H})^{+}$, 415.3053. $\mathrm{C}_{22} \mathrm{H}_{47} \mathrm{O}_{3} \mathrm{Si}_{2}$ requires $\mathrm{M}+\mathrm{H}, 415.3066]$.

Compound 72. $v_{\text {max }} / \mathrm{cm}^{-1} 1713(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.02(6 \mathrm{H}$, $\mathrm{s}, \mathrm{SiMe} \times 2), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 0.80,1.14$ and $1.28($ each $3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me} \times 3)$, $1.51\left(1 \mathrm{H}\right.$, dd, $J 14$ and $\left.3,4-\mathrm{H}_{\beta}\right), 1.67(1 \mathrm{H}$, dd, $J 13.5$ and $\left.4.5,2-\mathrm{H}_{\beta}\right), 1.96\left(1 \mathrm{H}, \mathrm{dd}, J 13.5\right.$ and $\left.7.5,2-\mathrm{H}_{a}\right), 2.67(1 \mathrm{H}$, dd, $J 14$ and $8,4-\mathrm{H}_{\alpha}$), 4.23 and 4.32 (each $1 \mathrm{H}, \mathrm{d}, J 19,7-\mathrm{H}_{2}$), $5.21(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ [Found: $(\mathrm{M}+\mathrm{H})^{+}, 301.2197 . \mathrm{C}_{16} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{M}+\mathrm{H}, 301.2201]$.

Acknowledgements

We are indebted to Dr U. Hengartner, Hoffmann-La Roche Ltd., Basel, Switzerland for his gift of some $(4 R, 6 R)$-4-hydroxy-2,2,6-trimethylcyclohexanone. This work partly supported by the Sasakawa Scientific Research Grant from The Japan Science Society.

References

1 For Part 4, see Y. Yamano, M. Mimuro and M. Ito, J. Chem. Soc., Perkin Trans. 1, 1997, 2713.
2 Y. Fujiwara, T. Maoka, M. Ookubo and T. Matsuno, Tetrahedron Lett., 1992, 33, 4941.
3 (a) T. Matsuno and M. Ookubo, Tetrahedron Lett., 1981, 4659; (b) T. Matsuno, M. Ookubo, T. Nishizawa and I. Shimizu, Chem. Pharm. Bull., 1984, 32, 4309.
4 (a) A. Khare, G. P. Moss and B. C. L. Weedon, Tetrahedron Lett., 1973, 3921; (b) T. Maoka and Y. Fujiwara, J. Jpn. Oil. Chem. Soc., 1996, 45, 667.
5 A. K. Chopra, A. Khare, G. P. Moss and B. C. L. Weedon, J. Chem. Soc., Perkin Trans. 1, 1988, 1383; B. C. L. Weedon, Pure Appl. Chem., 1973, 35, 113.
6 Y. Yamano, C. Tode and M. Ito, J. Chem. Soc., Perkin Trans. I, 1996, 1337.
7 A. Rüttimann, Carotenoid Chemistry and Biochemistry, ed. G. Britton and T. W. Goodwin, Pergamon Press, Oxford, 1982, p. 71

8 Y. Yamano and M. Ito, J. Chem. Soc., Perkin Trans. 1, 1993, 1599.
9 (a) H. Pauling, D. A. Andrews and N. C. Hindley, Helv. Chim. Acta, 1976, 59, 1233; (b) G. L. Olson, H. Cheung, K. D. Morgan, R. Borer and G. Saucy, Helv. Chim. Acta, 1976, 59, 567
10 Y. Yamano, C. Tode and M. Ito, J. Chem. Soc., Perkin Trans. 1, 1995, 1895.
11 L. Lopez, G. Mele, V. Fiandanese, C. Cardelliccho and A. Nacci, Tetrahedron, 1994, 50, 9097.
12 A. Rüttimann, G. Englert, H. Mayer, G. P. Moss and B. C. L. Weedon, Helv. Chim. Acta, 1983, 66, 1939.
13 S. Matsui, Bull. Chem. Soc. Jpn., 1984, 57, 426
14 W. J. Scott, M. R. Peña, K. Swärd, J. Stoessel and J. K. Stille, J. Org. Chem., 1985, 50, 2302.
15 E. J. Corey and K. Achiwa, J. Org. Chem., 1969, 34, 3667.
16 S. V. Ley, J. Norman, W. P. Griffith and S. P. Marsden, Synthesis, 1994, 639.
17 K. C. Nicolaou, C. V. C. Prasad, P. K. Somers and C. Hwang, J. Am. Chem. Soc., 1989, 111, 5330
18 Y. Kita, S. Kitagaki, Y. Yoshida, S. Mihara, D. Fang, M. Kondo, S. Okamoto, R. Imai, S. Akai and H. Fujioka, J. Org. Chem., 1997, 62, 4991.

Paper 8/03116I
Received 27th April 1998
Accepted 12th June 1998

[^0]: \dagger We have employed the numbering system used in carotenoids.

